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Abstract 

The share of the renewable energy and in particular the raising contribution of wind resources in the 

national energy-mixes of European countries showed a rapid growth over the last decade. 

Simultaneously, the beginning of the 20th century brought a revolution to the electricity trading 

systems, which from the state-owned structures transformed into free and competitive markets.  

Contemporarily, the privileged position of the wind energy producers is being weakened by their 

enforcement to participate in the market on equal terms, what entails the necessity of accurate 

production forecasting, what has been of secondary importance so far. The main aim of this study was 

to comparatively examine the wind generation forecasts in Poland and Portugal, as well as to verify 

their influence on the day-ahead market prices. The statistical analysis revealed significant deviations 

of the forecasted and actual wind production in both countries, which referred to the correspondent 

SPOT and balancing prices brought considerable financial losses from the perspective of energy 

suppliers. In the end, the influence of the wind generation forecasts on the SPOT prices has been 

examined by means of developed ARMA, ARMAX, NAR and NARX models. The results have shown that 

the usability of the information of forecasted wind generation is not unequivocal in developed SPOT 

prices models in Poland, mainly because of the randomness and volatility of recorded wind generation 

forecasts. However, in the case of Portugal, the forecasted wind generation occurred to be a valuable 

input in SPOT prices models, what has reflected in improved models accuracy. 
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Resumo 

A contribuição dos recursos eólicos no abastecimento elétrico dos países europeus tem revelado um 

rápido crescimento. Simultaneamente, o início do século XX trouxe uma revolução nos sistemas de 

energia elétrica, que passaram de estruturas monopolistas verticalmente integradas para mercados 

livres e competitivos. Atualmente, a posição privilegiada dos produtores de energia eólica está a 

chegar ao fim com a progressiva extinção das tarifas bonificadas, pelo que estes produtores estão a 

preparar a sua entrada no mercado elétrico. Esta nova realidade impõe a necessidade de uma previsão 

ainda mais precisa da produção eólica. O objetivo principal deste estudo é examinar 

comparativamente as previsões de geração de energia eólica na Polónia e em Portugal, bem como 

verificar a sua influência nos preços do mercado diário. A análise estatística efetuada revelou desvios 

significativos entre a produção eólica prevista e a realmente verificada. As penalizações valorizadas 

aos preços dos mercados diário e de desvios trouxeram perdas financeiras consideráveis. Finalmente, 

foi analisada a influência das previsões de geração eólica nos preços do mercado diário, por meio de 

modelos de previsão de preços (ARMA, ARMAX, NAR, NARX). Os resultados mostraram que a utilidade 

da informação da geração prevista de energia eólica não é inequívoca em modelos de previsão de 

preços do mercado diário desenvolvidos na Polónia, principalmente por causa da aleatoriedade e 

volatilidade das previsões registadas de geração eólica. No entanto, no caso de Portugal, a inclusão da 

geração de energia eólica prevista é uma entrada valiosa nos modelos de previsão de preços de 

mercado diário. 
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1. Introduction 

1.1. General view on the topic 

Sustainable Development of contemporary power system in the direction of Renewable Energy 

Sources requires facing the problems with unpredictability of their availability at a given time, what 

crossed with the time-variation of the load in the system and volatility of energy prices on the 

wholesale markets makes this issue strongly elaborate. One of the key aspects of reliable functioning 

of the power system is proper planning of the supply versus demand, which in light of the RES 

generation uncertainty becomes a struggle for responsible entities. Because of high unpredictability 

and instability, the inaccuracy of the e.g. wind generation forecasts entails consequences of two 

primary natures: 

 Technical – Divergence of the forecasted planned RES generation impedes the TSOs to 

properly and accurately plan the fulfilment of actual demand by available power capacity. 

 Economical – The uncertainty of the total forecasted wind power supply to the system 

translates into the uncertainty of the day-ahead and balancing market prices, what can result 

in financial losses of the market participants. 

The study being the subject of this thesis will refer to the latter aspect. The fact that the wind energy 

influences the wholesale market is well known. This considerable impact is caused by relatively low 

marginal cost of the energy from windfarms, because in principle, the wind energy is not burdened 

with fuels costs. Therefore, an injection of the wind energy, featured by the lowest unit cost, shifts the 

supply-demand curve to the right, what results in reduction of the market prices, what has been 

illustrated in the Figure 1. 

 

Figure 1 The influence of wind power on the SPOT market prices [1] 
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The green solid line represents the modified supply curve after injection of a given amount of wind 

power to the system, what is reflected in lower unit prices, compared to the dashed line (without wind 

power). As it can be observed in the Figure 1, the reduction of prices is of the highest level in the peak-

time, while in the time of the demand-valleys this decrement is not so remarkable. In the situation of 

significant amount of wind power in the system, the conventional and CHP units, characterised by high 

fuel costs but being also the base load suppliers need to be manipulated. 

1.1. Aims and objectives 

In the literature review concerning this project, a wide range of studies concerning the predictions of 

wind energy as well as SPOT market prices have been found. Although usually, in the collected 

publications, a focus was put only on a single case of particular power system/power market. To the 

best knowledge of the author, a multi-subject studies have not been performed to reveal whether a 

given forecasting methodology applies to the separate cases of different national market 

environments, such as in Poland and Portugal. Despite the fact that the Polish and Portuguese wind 

power capacity in the system is similar in amount, when considering the share of this kind of energy 

the differences are substantial. Therefore, the thesis is aimed to address the following research 

questions: 

 What is the quality of overall wind power forecasts in Poland and Portugal and what are the 

most-distinguishing features of the forecasting errors? 

Evaluation of the wind power prognoses will be made by means of statistical measures, which 

in quantitative way will give a picture on the accuracy, characteristics and tendencies 

observed. The comparison of obtained statistic description for both countries will allow to 

distinct the main differences between the forecasts and point out the main sources of 

uncertainty. 

 What is the cost of inaccurate wind power forecasting globally from the perspective of wind 

power producers in both countries? 

Using the market and wind generation data available for both countries, a financial loss from 

inaccurate wind power predictions will be calculated, which will illustrate the range and 

importance of the appropriate and accurate wind generation forecasts. 

 To what extent the information of expected wind generation improves the accuracy of the 

wholesale market prices forecasts in both examined countries?  

The verification of whether a wind generation has a value in predicting market SPOT prices 

requires a development of mathematical models. For the purpose of the study, the four 

models commonly used in dealing with market prices time series have been applied. The 
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modelling process will be carried out independently using data from Polish and Portuguese 

systems, what will allow to: 

o Notice if the wind generation data is improving the SPOT prices predictions in both 

countries, 

o Check if a given model can be successfully applied for the data coming from 

diametrically different power and market systems. 

1.2. Document layout 

In order to keep a comprehensiveness and readiness of the thesis, it has been written in a way allowing 

the reader to get the general context of the issues being examined, through the description of the 

methods used, ending on the results and conclusions: 

Chapter 2: State-of the-art review on forecasting the wind power and SPOT market prices, as well as 

discussing the development of the wind energy in power systems in the light of national and European 

law and regulation. The chapter aims to reveal the main differences between Portuguese and Polish 

power systems, also taking into account the market environment and applied solutions. 

Chapter 3 deals with the national wind generation forecasts published by the ENTSOE platform, which 

confronted with the actual measured data allowed to perform a statistical analysis of forecasting errors 

for both countries. The market data available on also on the ENTSOE platform combined with the 

calculated wind power forecasting errors made possible to obtain globally financial losses resulting 

from the inaccuracy of wind power predictions. 

Chapter 4 has been devoted to the description of the SPOT market prices forecasting models 

developed in this project, with all the correspondent literature background, concepts and mathematic 

expressions. 

Chapter 5 constitutes a collection of the obtained SPOT market hour-ahead forecasts results based on 

the models described in chapter 4, together with observations and comments for the period of 

December 2016 SPOT prices as evaluation dataset. 

Chapter 6 includes the most important observations and key findings from the conducted study. 

At the end of the document, in the appendixes, the Matlab codes of the SPOT prices forecasting models 

have been attached. 
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2. Renewable energy in the power systems 

2.1. State-of-the-art review 

This project concerns the two crucial problems in sustaining modern power systems, being a subject 

of intensive research within last decades, which are the Wind Power Forecasting (WPF) and Electricity 

Price Forecasting (EPF). The increasing share of wind energy in the power systems, together with 

tendency for equalization of wind power producers with all the remaining electricity market 

participants leads to the enhancement of interaction between the WPF and EPF. The impact of the 

wind power penetration into the power grid on the market player’s behaviour and his decisions has 

been studied by Usaola (2008), who estimated that the uncertainty of wind power supplied to the 

system leads to significant financial outcome reduction of the energy producers, reaching 10% of 

maximum obtainable revenue [2]. The same finding has been obtained by Crespo-Vasquez et al. 

(2017), who in the evaluation of the model constructed for decision-making of the windfarm owner 

underlined the loss of the incomes resulting from the uncertainty of wind power output – in this case 

the losses were constituting 4% of the total earnings [3]. The mitigation of this negative impact 

resulting from unpredictability actual wind production has been addressed by González-Aparicio and 

Zucker (2015) by means of application of clustering and regressive techniques in order to narrow the 

wind power uncertainty ranges and optimize bidding strategies, what brought promising results on the 

example of a given windfarm in the Spanish market; in this case, the prediction error value was 2.5% 

[4]. The following publications indicate that the improvement of WPF becomes crucial from the 

perspective of enhancement of the effectiveness of market actions taken by its contributors. 

2.1.1. Wind Power Forecasting 

Among the studied publications, the authors distinguish two main focuses made for counteracting the 

instability and uncertainty of the wind power: (i) improving the models for wind power forecasting and 

(ii) setting up energy storage and reserve power units. Despite the remarkable wind power capacity in 

the system, the existence of conventional reserve power is necessary as the interventional tool for 

System Operators to sustain a balance between the demand and supply. The back-up of the 

conventional plants for production deteriorates the overall environmental impact of the wind energy 

installations [5]. 

The comprehensive and condensed study on WPF methods has been delivered by Xin (2011), what 

gives a view on numerous aspects related to this issue. Above all, the two main approaches in WPF 

models can be distinguished: 

 Physical: the models are created based on the measurements, technical data of the windmills 

and air parameters provided by the weather prognoses. 



6 
 

 Statistical: including also the artificial intelligence, bases on the statistical models. 

The importance of the WPF reveals in the variety of aspects, on which the proper wind power 

prediction has an influence. This variety entails the necessity of forecasting in different time horizons, 

depending on the target use [6]: 

Table 1 WPF forecasting time horizons and corresponding applications [6] 

Time Horizon Target use: 

Up to 30 min ahead 
Electricity Market Clearing 

Wind Turbine control 

Up to 72 hours ahead Load Planning 

Up to 1 week ahead Unit Commitment Decisions 

Up to 1 year ahead 
Designing windfarms 

Maintenance schedules 
 

Besides the abovementioned criteria, the wind power forecasts can be classified according to the area 

which is covered by the forecast (single windmill, windfarm, cluster of windfarms, geographical region) 

or character of model’s input data (e.g. whether it is basing on a Numerical Weather Forecast or not)  

[6]. As the main opportunity of WPF improvement, Xin (2011) identifies a combination of the already 

developed, but yet separated statistical and physical models [6]. 

Another issue related with the WPF is its scalability, what has been pointed by Rasheed et. al. (2014). 

The author emphasizes that for two instances of exactly the same weather conditions in the windfarm 

the power output may differ significantly, what is caused by the complexity of the terrain on which the 

installation has been set up [7]. 

The fact that there are not universally optimal WPF models for all the windfarms has been highlighted 

by Banerjee et al. (2017), who demonstrated that the “best” modelling approach depends also on the 

evaluation criterion. Therefore, an optimization algorithms have been constructed in order to help the 

wind producer in finding the most appropriate modelling tool in each particular case [5]. 

The achievable decrement of the WPF errors entails the necessity of knowing the primary sources of 

uncertainty. In the paper published by Monforti et. al. the authors have undertaken the attempt to 

detect and weight the main factors affecting inaccurate wind power predictions. Besides the 

uncertainty of predicted weather conditions, the lack of comprehensive knowledge of the technical 

parameters of the wind farms and insufficient information on the wind fields are mentioned as the 

two main sources of WPF inaccurateness. Furthermore, it was found that the wind fields are of crucial 

importance when forecasting the wind power at national level [8]. 
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2.1.2. Market Price Forecasting 

The desire for knowing the market prices in advance with acceptable reliability has become naturally 

the subject of many studies. A remarkable focus has been put on forecasting the spot market prices  

[27], [29]-[30].  

During the literature study for the purpose of this thesis, numerous approaches in forecasting the spot 

market prices have been found. Bessec et al. (2014) distinguishes three main modelling methods for 

predicting the energy prices on the market: equilibrium and game theory, simulation and time series 

forecasting methods [27]. Within these groups of methods, dozens of techniques have been 

developed, improved and merged with each other for obtaining the most reliable results. 

The most widely used methods comprise the time series models, which, simply speaking, use the past 

observations of a variable to estimate its future values. The basic models for prediction of time series 

include smoothing methods like averaging and exponential smoothing (e.g. Brown’s, Holt’s Winter’s 

methods). Although, the results of these models are burdened with relatively high prediction errors 

[27]. Throughout the numerous scientific works, the most attention is paid to the autoregressive (AR), 

Moving Average (MA) and their coupling - ARMA models, which successfully find an application in 

forecasting economy phenomena [24]. The ARMA model can be useful in stationary processes, which 

is characterised by a constant value of the average in the whole time domain. Since a lot of processes 

indicate a presence of a trend, the ARMA model can’t be applied directly – this problem is solved by 

extension of the ARMA model by integration (I) term, which allows to transform the process with trend 

into a stationary one (ARIMA).  Another difficulty comes from the seasonality of some time series in a 

short time, what has been addressed by Seasonal (SARIMA) model.  

The aforementioned models work on a basis of a significant assumption, that the observed variable is 

of a constant volatility, it is, its variance mean amplitude doesn’t change in time (homoscedasticity). 

However, the amplitudes of variance may be influenced by some external and temporal factors. This 

obstacle is counteracted by applying the GARCH model, which improves the predicting process of time 

series with unexpected spikes [11]. 

In the age of computers, the Artificial Neural Networks (ANN) as a branch of Computational Intelligence 

(CI) become increasingly popular in all range of predictions, mainly because of their forecasting 

accuracy and availability of dedicated software. Neural networks can be used successfully in 

circumstances which prevent the statistical methods to be applied. As one of the main advantages of 

the ANN one may mention its adaptability for complex, dynamic and nonlinear relations. On the other 

hand, Weron (2014) emphasises that the neural networks can be susceptible for unexpected, rapid 

changes in the process. The wide range of available ANNs usually is classified due to the architecture 
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or learning algorithm [33]. Besides that, Weron (2009) points out the hardness of comparison of 

forecasting efficiency of different CI methods among each other, because of the calibration conditions. 

Kolmek and Navruz (2012) performed the parallel forecasting processes for the Turkish energy spot 

prices by means of the ARIMA and ANN model with the learning dataset constituting historical 

observations for time-range of 342 days. The latter model was burdened with smaller error, what was 

concluded as a main predominance of this method with respect to statistical techniques (15.60% MAPE 

for ARIMA vs 14.15% MAPE for ANN, calculated for a time horizon of 1 week) [33]. 

Another approach finding an application in spot prices modelling is a Wavelet decomposition. The time 

series is decomposed into components of different frequency. Those components may have a different 

importance in providing the information to the model, what entails the necessity of assigning the 

proper weights to particular waves of given frequency in order to reflect possibly the most accurate 

projection explained variable. The low frequency components represent the global information (e.g. 

trends), whereas the high frequency waves constitute an input of the detailed information [35]. 

In his explicit study, Weron (2014) lists the strengths and weaknesses of the electricity spot prices in 

terms of the aforementioned methods, often being individual for a particular modelling approach. The 

compensation of the weaknesses may be achieved by combining the modelling tools by means of 

dedicated computer software. The hybrid EPF models become ascendingly applied in forecasting 

problems, often resulting in performance improvement [36]. As the examples of hybrid methods of 

spot price forecasting, the studies of Zhongfu Tan et al. (2010, wavelet transform combined with ARMA 

and GARCH models) and M.Shafie-khah (2011, wavelets, ARIMA, NN combination) can be pointed, 

resulting in promising outcomes of the proposed junctions [36]. 

The comprehensive literature study of Weron (2014) lists the areas of EPF, which still have a potential 

of improvement, as well as some overlooked issues which restrain achievement of better forecasting 

results, which are inter alia: 

 optimization of input variable set from the wind range of possibly influential factors 

 the approach to reflect the seasonality and periodicity in different time horizons doesn’t keep 

up with the development of other EPF factors being more deeply analysed 

 prediction of atypical, irregular events like price spikes, having the reserve margin as an 

explaining variable 

 directing of the study focus from the point forecasts to the interval and density forecasts 

 extension of the forecasting horizon with subsequent improvement of long-range uncertainty 

and risk 
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 threshold forecasting, which instead of predicting exact, definite values of energy prices, 

estimates the thresholds of the price for planning purposes 

 combination of forecasts (forecasts pooling), which indicates promising results, but has not 

been scientifically supported yet to an adequate level 

 finally, the necessity of establishing the unequivocal ground for testing and evaluating of 

different forecasts. The author points the lack of consequence in model building process and 

diversity of evaluation methods, what disables the direct comparison and efficiency measure 

of considered forecasting models. 

Many researchers put the question of the influence of wind generation forecasts on the wholesale 

market prices  and built dedicated for it forecasting models [37]. Nevertheless, to the best 

knowledge of the author, there have not been made a one integrated study comparing directly the 

economically and technically different power systems. Poland and Portugal developed 

diametrically opposed energy mixes, and the energy prices may be driven by various factors of 

different importance. The impact of wind energy generation on the market prices is a mutual 

problem for both countries; the question which has to be answered is to what extent the wind 

power injected to the system affects day-ahead prices. 

2.2. Portuguese and Polish RES sector in reference to the European Union 

Within recent several decades, the European energy systems have undergone ground-breaking 

changes, mainly because of the outspread environmental consciousness of its citizens, as well as of 

representing them politicians. Following The European Commission’s directive [14], called ordinarily 

“3x20”, (imposing the reduction of the CO2 emission by 20% with simultaneous increase of the 

renewable energy share in the energy mix and the widely interpreted energy efficiency also by one 

fifth by the year 2020), recently being updated for the 2030 horizon, the European Union countries 

have to face many hindrances on the way to achieve the established commitment. The 

accomplishment of the aforementioned tasks requires enormous amount of investment not only in 

the infrastructure, but also in the management and administration, what influences the whole 

economy [1].  

According to Eurostat (2016), the majority of the countries are on a good way to achieve the aimed 

thresholds in the year 2020. Moreover, some of them have already met the EC directive’s 

requirements, continuing to develop the improvement of the national energy sector. In Figure 2, the 
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percentage share of the RES for Portugal, Poland and entire EU has been shown [15]. 

 

Figure 2 Overall share of RES in Portugal, Poland and EU28 in the years 2004-2015 [15] 

Portugal is a country characterized by very high share of the RES in the total energy mix, reaching 28% 

in 2015, while Poland represents steady growth in this area as well, being slightly below the EU28 

average (11,8%). In this point it has to be stressed that direct comparison on the RES share is improper, 

since throughout the continent, the countries have developed diverse and specific energy systems, 

depending mainly on available domestic resources. Another key factors determining the shape of 

energy systems are climate conditions (e.g. temperature), as well as the maximum energy 

independency. Despite the fact that in Poland considerable increment of RES in total energy 

production is observed, the dominating primary energy source constitutes coal, which is the most CO2-

intensive energy production technology. Contrarily to Poland, Portugal’s energy mix is diverse, with no 

single dominant energy production technology [17],[18].  

The continuation of the EU plans for clean and sustainable energy technologies requires the adequate 

and optimal utilization of the wide range RES technologies in order to make it not only efficient, but 

also profitable. Poland and Portugal are countries very distant geographically, what results in different 

climate conditions and in different available ways of renewable energy generation. Taking into account 

the average annual wind speed, in both countries the obtained measures are similar (0-4 m/s) [16]. On 

the other hand, the solar energy in Portugal has much higher potential for utilization, what measures 

the solar irradiation (1800 kWh/m2 in Portugal, around 1200 kWh/m2 in Poland). The pie charts 

generated on the basis of the Eurostat reports show the decomposition of the electric energy 

generation from  RES with regard to particular technologies [15]. 
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Figure 3 Renewable electric energy production per type in 2015 [15] 

In the year 2015, the Portuguese electric energy generation branch was injected by 2400 ktoe of 

energy from RES, dominated mainly by wind and hydro power. On the other hand, the Polish 

renewable electric energy was produced mainly from wind and solid biofuels in the overall of 1890 

ktoe. As it was explained in IEA report [18], the relatively high share of the biomass may be resulting 

from the possibility of burning or co-burning biomass in the conventional coal-fired boilers, what still 

is considered as the renewable energy technology. A significant part in the RES, taking into account 

the entire EU, constitutes the solar energy, equal to 11% of total in 2015. The share of solar energy in 

the Portuguese RES structure is of a relatively small importance, even though this country has one of 

the biggest potentials of utilization of energy from the sun [17]. 

Both Portugal and Poland, as well as the entire group of 28 EU show a considerable share of the wind 

energy in the total RES electricity production. This kind of energy generation became commonly 

chosen technology in the energy systems, due to its relative simplicity, time of construction and 

accessibility of wind resources. 

2.3. The influence of wind generation on the energy markets 

Wind power is one of the most commonly applied technologies in renewable energy generation. The 

increasing share of the wind energy in the overall production amplifies also the difficulty of balancing 

the system, mainly because the accessible wind resource is unstable and troublesome to predict in 

longer  time. This entanglement is enhanced by the increasing production capacity of windfarms. In 

the Figure 4, the actual power capacities of wind energy producers can be read, reaching over 5GW 

both in Poland and Portugal in 2016. 
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Figure 4 Wind production capacity in Poland and Portugal in the time range of 1997-2016 [19] 

 When comparing the dynamics of wind energy development in both countries it can be noticed that 

Polish wind energy sector is undergoing rapid expansion, while the Portuguese one is increasing 

moderately, resembling proportionality with respect to time.  

Contemporarily, when the electricity is traded on the wholesale markets, the uncertainty regarding 

the amount of energy supplied to the system influences directly the prices on the market. Every excess 

or deficiency of energy in the system has a consequence in the financial outcomes of energy 

suppliers/receivers [2].  

In order to avoid the financial losses, all the wind energy related subjects in the system are 

continuously working on the tools allowing to forecast the wind generation as well as possible. The 

emphasis on the wind generation predictions is made both in microscale (particular wind farms) and 

macroscale (the overall energy supplied to the system). The volatility of wind energy generation comes 

mainly from the dynamic weather conditions, which also are difficult to be accurately foreseen. 

Popławski (2014) highlighted that the development of wind energy technologies goes parallel with the 

development of wind power forecasting tools, especially in the Western Europe institutions. The 

constantly improving prognoses are mainly in the interest of energy Systems Operators (SO), who 

release the forecasts results publicly. Nevertheless, the methodology used is often restricted or 

covered by the patent laws. 

It also should be pointed, that the uncertainty of the energy produced in a system has not only negative 

consequences. The presence of the day-ahead market, as well as the balancing market may be a field 

to multiply the member’s revenues, who may speculate the prices and gain profits only from 

buying/selling the energy depending on the market or imbalance prices [2]. 
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Usaola (2008) describes the sequential pattern of the arrangement of the majority of electricity 

markets, depending on the bidding horizon. The earliest bids take place from months to days before 

the Operational Settlement Period (OSP) on the Forward Market, further, the Daily Market 

commitments are taking place up to several tens of hours before the OSP. Finally, the shortest lag 

between the commitment and the OSP (hours) is characterizing the Intraday Market (IM), as well as 

corresponding Balancing Market (BM). The wind generation forecasts perform acceptable and reliable 

result mostly up to one day ahead, thus, the wind generation will affect mostly the Daily and Intraday 

Market [2].  

2.4. Contemporary Structure of European Energy markets 

Electric systems origins took place about one hundred years ago, giving an incipience and basis for 

constantly undergoing development of civilization. The most rapid development of electric systems 

has been observed just after the Second World War, when centralized, state-owned structures have 

been created in order to completely control all the electric energy subsystems, from generation to the 

final delivery. It was motivated mainly by the strategic importance of the electricity as a good, 

especially from the perspective of public utilities and the significance of energy supply during war. The 

first country which desisted the monopolistic, state-owned electric system and turned into direction 

of competitive markets was Great Britain, by the establishment of the Electricity Act in 1989. This 

unprecedented change of approach became a trigger for ground-breaking changes in other European 

which contribute to the actual shape of electric energy systems [1]. 

One of the main disadvantages of the centralized, state-owned system is its susceptibility for the 

political manipulations, what could be observed, for example in the Soviet Union countries in the end 

of XX century. Because of the centralized management of all the parts of the system, its priorities could 

be affected or re-defined by the current authority. Moreover, the imbalance between the technical 

and economic effectiveness of the system towards the former one. The competitive market allows to 

avoid the possibility of this imbalance to occur [1]. 

Contrary to the abandoned monopolistic approach, contemporarily, the electric energy is considered 

as a commodity rather than a good. Furthermore, the distinction between electricity as a product and 

electricity delivery as a service is fundamental of the competitive market existence [1]. Despite the fact 

that the energy industry reforming may take different forms with relation to a particular country, 

Mielczarski (2000) highlights the universal aims of energy systems restructuring: 

 Overall decrease of the energy prices 

 Improvement of the economic efficiency of the energy systems 

 Enhancing the innovative solutions in energy systems 
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 Ensuring the possibility of choosing the electricity provider 

 Establishment of the customer’s legal protection 

 Increase in the quality and reliability of electricity supply 

All the mentioned aims are possible to achieve in the competitive market in the conditions of equal 

treatment of its participants, unrestricted market access and unbidden prices derived from the 

demand-supply balance [1]. 

The concept of the liberated, deregulated energy market has been adopted in all the EU countries 

within recent 20 years, although the process of restructuring could take different forms and have 

different motivation [10].  

The approach of competitive wholesale market has evolved to the international scale. Kopsakangas-

Savolainen et. al. (2012) describes the example of Nordic Power Market (Nord Pool), being a 

consolidated energy market for 5 Northern Europe countries (Sweden, Denmark, Finland, Norway, 

Estonia) since 1999. This unification made the Nord Pool market the World’s largest (considering 

volume). The Nord Pool market constitute about 300 participants, who are not obliged to buy/sell on 

the market, although, the major part of transactions (70%) has been made through the spot market. 

Because of the common management of the interconnections between the countries, as well as the 

possibility to trade the energy between the subjects from other countries, the overall efficiency of the 

system has improved [10]. 

2.5. Characteristics of Polish and Portuguese energy exchange institutions 

Day-ahead market type is commonly used in commodity, currency or shares market – the transaction 

is made up to two days before the physical execution. What makes the energy day ahead markets 

unique is the inability of the storage of the commodity. This entails the necessity of continuous 

balancing the supply and demand [11]. 

In order to ensure the wide access to the market information, to maintain the clearance and 

transparency of the transaction rules, the state-controlled institutions have been established. The 

existence of these companies are a foundation for the fair and equitable energy exchange systems. 

Below, the short characteristics of Polish and Portuguese energy exchange institutions have been 

shortly described.  

The Towarowa Giełda Energii (TGE) has been stablished in 1999 as a response of the Polish government 

for the necessity of institution managing the energy trading on emerging liberated, competitive 

market. Half a year after commission, the spot market has been launched for market participants. 

Currently, TGE is the only company licensed by the state for managing the energy exchange. During 

two recent decades, TGE expanded their area of activity by the emissions market exchange and origin 
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certificates trading platform. In 2008 TGE introduced the Commodity Forward Instruments market, 

which allows to maintain relatively constant prices in a wider time-horizon, as well as to optimize the 

costs of sales/purchase of the energy [12]. 

While the TGE activities are limited to the country borders, Iberian Electricity Market (MIBEL) is an 

example of the energy market expanded to the regional scale, being a result of joined efforts of Spanish 

and Portuguese governments. This convergence, having origins in 2001, allows every market 

participant to make deals with subjects from all over the Iberian Peninsula. The integration of hitherto 

separated energy systems required a series of undertakings, including the harmonization of the electric 

network, law and economic environment. In 2004, the both parts of the Santiago Agreement declared 

the creation of two sub-institutions, responsible for different aspects of proper functioning of the 

system as a whole. These were the OMI-Polo Português (OMIP), responsible for the forward market 

and OMI-Polo Español (OMIE), which was brought to existence to manage the spot market. The 

timespan between the Santiago Agreement and the launch of the Iberian Market (1 July 2007) was 

influenced by many factors, including political changes. Creation of the new companies enforced the 

involvement of already exiting, yet separated market operators (OMEL - Operador del Mercado Ibérico 

de Energía, Polo Español and OMIP–Operador do Mercado Ibérico SGPS) to transfer some of the 

business branches to the newly founded enterprises. As a completion to the unified market, the 

OMIClear corporate has been established. The OMIClear acts as a Central Counterparty (CCP) to all the 

operations taking place on the market, guarantying transparency and proper risk management. In 

other words, OMIClear is an interconnector between buyer and seller, assuring that all the party’s 

commitments are going to be fulfilled. All the mentioned Iberian Electricity Market companies are not 

independent itself; their shares are distributed between the remaining companies. The graphical 

representation of the MIBEL has been shown in the Figure 5 [13].  

 

Figure 5 The organization structure of the Iberian Electricity Market with shares distribution 
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3. Polish and Portuguese wind power forecasts analysis 

3.1. Verification of the Polish and Portuguese wind power forecasts by means of 

statistical measures 

Numerous publications concerning the wind power forecasting underline the significant contribution 

of windfarms in the energy systems and associated difficulties [20],[21]. As the main cause of those 

difficulties, the instability of the energy production is considered. Dependency on weather conditions, 

and thus, on weather forecasts amplifies complicity of effective projection of wind generation. The 

System Operator requires in advance the planned generation of windmills in order to balance the 

demand and supply of electric energy, optimize the loads and plan the power reserves. For this reason, 

the wind energy producers are obliged to provide the System Operator with the plan of production for 

a given time ahead. Accurate forecasts, both in micro-and-macro scale, aimed at the minimum 

prediction error are necessary to maintain a reliable electric energy system [22]. 

3.1.1. Statistic description 

In this study, the statistical analysis of the aggregated wind generation forecasts for Poland and 

Portugal has been conducted. The day-ahead forecasts together with actual generation of wind in the 

energy systems of both countries have been collected. The figures for analysis were sourced from the 

European Network of Transmission System Operators for Electricity (ENTSOE) website, which provides 

a wide range of up-to-date, energy systems and markets data. The data set used for statistical 

description was of the 1-hour fragmentation, encompassing the entire calendar year 2016, what gave 

8784 records in total for each variable. The prediction error is expressed as the difference between the 

realization of the variable and its corresponding forecasted value for a given instant t: 

 𝑒𝑡 = 𝑃𝑡 − 𝑃𝑡
∗ (1)  

Where 𝑒𝑡 is the absolute error of the forecast and 𝑃𝑡 , 𝑃𝑡
∗ represent the actual wind power in the system 

and its day-ahead prediction, respectively, expressed in MW. The error value has been calculated for 

each hour of the 2016 year and divided into ranges to present the error distribution on a histogram. 

The analysed forecasts has been published by the ENTO-E platform, which collects the Power System 

data from all the associated TSOs. 
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Figure 6 Aggregated wind generation error forecast distribution for Poland and Portugal, 2016 

The main conclusion from visual analysis of the above chart is that the wind generation forecasts are 

generally underestimated in both countries, since the result of subtraction of the forecasted from 

actual value of power takes positive value, between 0 and 200 MW. To get more deep view into the 

characteristics of the error distribution, the statistical parameters of the examined dataset have been 

determined. Besides the minimum and maximum values in each of the samples, the average value of 

the forecasting error has been calculated, according to formulae: 

 �̅� =
1

𝑁
∑𝑒

𝑁

𝑡=1

 (2)  

Where �̅� represents the average error and N expresses the total number of observations taken into 

account. The next determined parameter is median, which is the value in an ordered set of values (here 

forecast errors), for which there is the same number of observations with higher and lower values. The 

statistic description includes also the dominant, which is the most frequently occurring value in the set 

of observations. Standard deviation 𝜎 of the forecast errors is calculated as follows. It describes the 

volatility of the examined sample: 

 𝜎 = √
1

𝑁 − 1
∑(𝑒𝑡 − 𝑒�̅�)

2

𝑁

𝑡=1

 (3)  

N stands for the total number of observations, which in this study was equal to 8784. Standard 

deviation has the same unit as the unit of the observed quantities. The concentration of the values 

around the average value is defined by the kurtosis K (4), while the asymmetry of the distribution graph 

is assessed by the Skewness S (5): 
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 𝐾 =

1
𝑁
∑ (𝑒𝑡 − �̅�)

4𝑁
𝑡=1

𝜎4
− 3 (4)  

 𝑆 =
𝑁∑ (𝑒𝑡 − 𝑒)

3𝑁
𝑡=1

(𝑁 − 1)(𝑁 − 2)𝜎3
 (5)  

One of the most common ways to evaluate the accuracy of the forecast is the Mean Absolute 

Percentage Error (MAPE), which measures the relative inaccuracy of prediction: 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑒𝑡
𝑃𝑡

𝑁

𝑡=1

| ∙ 100% (6)  

The statistic description results have been collected in the Table 2, both for forecasting errors in Polish 

and Portuguese  wind generation. 

Table 2 Statistical description of the wind Energy forecast error for Poland and Portugal in 2016 

Statistical Measure Poland Portugal 

Average, MW 118.23 7.52 

Median, MW 98.00 8.00 

Dominant, MW 71.00 3.00 

Standard deviation, MW 173.00 353.30 

Kurtosis 7.17 13.02 

Skewness 0.399 -0.307 

Amplitude, MW 2978.00 5593.00 

Minimum, MW -1189.00 -3659.00 

Maximum, MW 1789.00 1934.00 

MAPE, % 15.00 24.20 

 

Analysing the above table one may conclude that both Polish and Portuguese forecasts are 

underestimated, because the average values exceed 0 significantly, especially in Poland, reaching 

118MW. Despite the fact that the average, median and dominant are much higher in Poland with 

relation to Portugal, the Portuguese forecast is characterised by higher volatility, what indicate the 

values of kurtosis and standard deviation. Comparing the kurtosis of both forecasts errors, the higher 

tendency for clustering of the error close to the average value occurs in the forecast prepared for 

Poland. In both cases, the extreme values of the forecast error reached gigawatts. Comparing the 

MAPE values, the Polish forecasts perform considerably better, reaching 15% on average. The 

skewness values of examined samples took opposite sign for Poland and Portugal, what means that 

the asymmetry of the error distributions has opposite direction. Comparing the wind generation 

forecasts error (up to 2GW) with the overall generation rates in the countries (reaching up to about 

10GW in Portugal and 50GW in Poland) leads to the question in what extend these forecast influence 

the total energy system and energy markets.  
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3.1.2. Theil divergence of the wind generation forecast [24] 

Calculation of the Theil coefficient allows to have an insight in the particular sources of the total 

forecasting error. The general formulae for determining the Theil 𝐼2 value is described below: 

 𝐼2 =
∑ (𝑃𝑡 − 𝑃𝑡

∗)2𝑁
𝑡=1

∑ 𝑃𝑡
2𝑁

𝑡=1

 (7)  

The square from the Theil coefficient gives an information about average, relative forecast fit. The 

overall value of 𝐼2 can be decomposed in three parts, representing different characteristic of the 

approximation error: 

 𝐼2 = 𝐼1
2 + 𝐼2

2 + 𝐼3
2 (8)  

Where the individual components can be determined following the formulas 9, 10 and 11: 

 𝐼1
2 =

𝑁(�̅�𝑡 − �̅�𝑡
∗)2

∑ 𝑃𝑡
2𝑁

𝑡=1

 (9)  

 𝐼2
2 =

𝑁(𝜎 − 𝜎∗)2

∑ 𝑃𝑡
2𝑁

𝑡=1

 (10)  

 𝐼3
2 =

2𝑚𝜎𝜎∗(1 − 𝑅)

∑ 𝑃𝑡
2𝑁

𝑡=1

 (11)  

where R represents the Pearson’s coefficient of linear correlation between the time series 𝑃𝑡 and 𝑃𝑡
∗. 

The 𝐼1
2 component measures the influence of the systematic error (improper adjustment of the 

average), 𝐼2
2 represents the impact of the improper elasticity of the forecasting model (the estimated 

variance of the explained variable was inappropriately mapped), while 𝐼3
2 reflects the fallibility of the 

model in spotting the points, where the trend of variable changes. Since the three parts of Theil 

divergence divided by 𝐼2 sum up to 1, the percentage shares of the total value represent the relative 

influence of particular error root in general. The results of calculations have been gathered in Table 3. 

Table 3 Theil divergence calculation results for Polish and Portuguese wind generation forecasts 

parameter PL PT parameter PL PT 

𝐼2 0.01465 0.04176 𝐼1
2/𝐼2 31.84% 0.05% 

𝐼1
2 0.00466 0.00002 𝐼2

2/𝐼2 3.84% 0.08% 

𝐼2
2 0.00056 0.00004 𝐼3

2/𝐼2 64.32% 99.87% 

𝐼3
2 0.00942 0.04171 ∑ 100% 100% 

 

Analysing the above table, the main cause of the wind generation forecast uncertainty is the directional 

divergence, both for Portugal and Poland, contributing in the total forecast error with shares of 64.32% 
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and 99.87% shares, respectively. In other words, the wind forecasts perform wrong when, for example, 

the generation suddenly starts to decrease after some period of increment. Additionally, a 

considerable part of the error in polish forecast (31.84%) is caused by the misestimating of the average 

value. 

3.2. Determination of financial losses resulting from wind power forecast 

deviations 

The rapid development of the wind energy made it one of the most commonly used RES technology 

worldwide, what was influenced mainly by extraordinary conditions of participation in the energy 

systems. As the most considerable factor for the wind energy expansion one may consider the politics. 

Besides the „3x20” climate pack, described in section 1.2, the EU imposed the mandatory purchases 

of energy from the owners of the windfarms (2001/77/EC directive). Even though the wind energy 

sellers are obliged to make a day-ahead production plans [25], the certainty of selling the entire 

produced energy make the accuracy of predicted generation unessential. The main sufferer of the 

significant deviations between the wind generation plan and its realization was the DSO, who in the 

case of energy imbalance in the system had to find alternatives for mitigate the inadvisable variations. 

The harmfulness of wind generation uncertainty can be noticeable especially in the countries, where 

the windmills take significant part in the total energy mix. The blackout phenomenon may be a 

consequence of extremely imbalanced energy system, what is given by the example of Germany [22]. 

Originally, in accordance with the 2001/77/EC directive the governments have implemented individual 

energy pricing mechanisms as incentives for wind energy investors. In Portugal, the feed-in tariff has 

been introduced, which regarded the windfarms not older than 15 years which haven’t produced more 

than 30GWh from the moment of its commission [26]. On the other hand, in Poland, the Energy 

Regulation Office has set the arbitrarily set uniform energy price, which in the worst case of high 

imbalance was differing from the contracted price insensibly [25]. All in all, the energy prices in Poland 

and Portugal were independent from the day-ahead market. 

Nowadays, the aforementioned approach of wind energy pricing has changed into the trend for 

considering the wind energy producers as regular participants of the wholesale markets, as well as 

intra-day and balancing markets. This alteration raises the wind generation forecasts to the key-

importance level. As the maximization of the economic income is a priority for the wind energy 

producers, the appropriate production prognoses are the foundation for effective operations on the 

market [26].  

In the most of the cases, the wind generation forecasts are characterized by the short-term time 

horizon, up to 24hours ahead. The hour-ahead forecast, together with the intraday market platform 
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may be a tool for modifying the day-ahead plan and its execution, nevertheless the participation in the 

intraday market brings the risk of reaching the limit values. The intraday market liquidity and reliability 

of the day-ahead forecast became two contrary decision variables to balance [26].  

Having the total wind generation day-ahead forecast and actual values of wind energy injected to the 

system (ENTSOE) for hourly fragmentation in 2016 calendar year, the total financial losses resulting 

from wind energy day-ahead plan deviation are going to be determined, both for Poland and Portugal. 

For the purpose of this study, it was assumed that the wind energy sellers do not have any forward 

contracts. Additionally, the wind producers rely entirely on the day-ahead plan and do not participate 

in the intraday market.  

At this point it has to be underlined that there are two divergent approaches of the imbalance pricing 

in Poland and Portugal. In Poland, there exists only one, uniform imbalance market price. Contrarily, 

in Portugal, two imbalance prices can be distinguished: the lower and upper imbalance price, 

depending on the imbalance character (deficiency or surplus).  

Both Figure 7 and Figure 8 reveal distinctive features – in the case of Poland, several examples of 

drastic peaks of the prices can be observed, reaching around 350 EUR/MWh. In the Portuguese market, 

the extremum reaches up to 175 EUR/MWh. Furthermore, what was often observed in the case of 

Portugal and did not take place in Poland is the negative price of energy. 

Figure 7 SPOT and balancing market prices in Poland in 2016 

Figure 8 SPOT and balancing market prices in Portugal in 2016 
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Following the mentioned dissimilarities, the calculation of the financial loss has to be defined 

separately for both countries. the total loss of production plan deviation for Poland will be estimated 

as follows: 

 𝐿 =∑|𝐸𝑡 − 𝐸𝑡
∗| ∗ (𝐼𝑡 −𝑀𝑡)

𝑁

𝑡=1

,         𝑓𝑜𝑟 𝐸𝑡 − 𝐸𝑡
∗ < 0 (12)  

 𝐿 =∑|𝐸𝑡 − 𝐸𝑡
∗| ∗ (𝑀𝑡 − 𝐼𝑡)

𝑁

𝑡=1

,         𝑓𝑜𝑟 𝐸𝑡 − 𝐸𝑡
∗ > 0 (13)  

Where: L – financial loss,  𝐸𝑡, 𝐸𝑡
∗ - actual and planned wind energy, 𝑀𝑡  – spot market price, 𝐼𝑡  – 

imbalance price. 

The imbalance price in Portugal will depend on whether there is a surplus or deficiency of the produced 

energy with respect to the day-ahead plan: 

 𝐿 =∑|𝐸𝑡 − 𝐸𝑡
∗| ∗ (𝐼𝑡

𝑈 −𝑀𝑡)

𝑁

𝑡=1

,         𝑓𝑜𝑟 𝐸𝑡 − 𝐸𝑡
∗ < 0 (14)  

 𝐿 =∑|𝐸𝑡 − 𝐸𝑡
∗| ∗ (𝑀𝑡 − 𝐼𝑡

𝐿)

𝑁

𝑡=1

,         𝑓𝑜𝑟 𝐸𝑡 − 𝐸𝑡
∗ > 0 (15)  

Where 𝐼𝑡
𝑈  and 𝐼𝑡

𝐿  are upper and lower imbalance price, respectively. 

The aggregated financial losses have been calculated for the entire calendar year 2016. Moreover, the 

number of hours during which the wind generation forecast deviation brought benefits (the financial 

loss L took negative values) have been counted. The calculation results has been collected in Table 4: 

Table 4 Financial losses resulting from wind generation forecast deviation in calendar year 2016 

 PL PT 

Total  financial loss, € 1 900 592 20 812 563 

Number of hours, when forecast deviation brought benefits (L<0) 4510 814 

Total volume of imbalanced energy, MWh 1 358 182 1 944 235 

Unit cost of imbalanced energy, €/MWh 1.40 10.70 

 

Although the total wind generated imbalanced energy volume in 2016 is not significantly different 

between Poland and Portugal, the financial losses in the case of the Iberian country reached almost 21 

million €, what was over ten times more than in the case of Poland. Despite the fact that the yearly-

aggregated forecast deviation brought losses, there were hours, when it resulted in positive income 

(L<0). In Poland, more than a half of hours in the year actually brought benefits from wrong planning 

(4510 times in 8784 of total). To directly compare the results, the unit costs of the forecast error has 
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been calculated by division of the total imbalance by the total financial loss in 2016. As it is shown in 

the Table 3, the 1MWh planning error in Portugal resulted in 10.7€ of cost, what was almost 10 times 

in comparison with Poland. Such a significant discrepancy comes probably from the imbalance pricing 

system, which is different in these countries. In the circumstance of single, uniform imbalance price, 

there exist a considerable probability of gaining incomes from selling energy on the balancing market 

instead of the spot market. The Polish wind energy seller may speculate about the difference between 

the spot and imbalance prices, what may encourage him to intentionally distort the production plan. 

Contrarily, the Portuguese energy seller may expect only the negative outcomes from inappropriate 

production plan. 
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4. Spot market prices forecasting models  

The necessity of accurate wholesale market prices forecasting is supported by the importance of this 

kind of information to all the electricity market stakeholders. Reliable predictions help the market 

participants to plan the activities and resources in different time horizons. Moreover, a price 

forecasting may be a basis for regulatory constraints and limits imposed by the relevant market bodies. 

Apart from the Futures Market, the SPOT market is the platform where most of the electricity volume 

is traded, what makes it the most significant and influencing the operation of the entire power system.  

The day-ahead market allows the suppliers and recipients to trade in the short term the 

excess/deficiency of energy which has not been included in future contracts.  Knowing the future 

electricity prices allows to optimize the position of a given entity on the market, resulting in 

maximization of profits or minimization of losses. Inaccurate prediction may have a consequence in 

the necessity of additional purchases/sales on the balancing market, in which usually the prices are 

less profitable both from the suppliers/consumers/traders point of view. 

As it was demonstrated in the section 3.2, the uncertainty of wind energy production plan is connected 

with considerable financial losses, because the privileged position of RES in the energy market  has 

been abandoned. 

The improvement of the SPOT market prices forecasts is of a high interest to the market players. 

Therefore, it has been decided to perform SPOT market prices forecasts by means of commonly used 

time series models, which have been studied in publications mentioned in section 2.1. Secondly, these 

models will be extended by addition of wind generation forecast as an external input in order to note 

whether this extension can bring and advantage in the obtained results. The simulation will be 

performed for both countries, what will answer the question whether the usability of predicted wind 

power is of the same importance in both Polish and Portuguese systems. 

4.1. Persistence Model 

Persistence models, also named as the naive models are characterized by their simplicity. Generally, 

the forecasted value of model takes the value of the last observation.  

 𝑦𝑡+1
 = 𝑦𝑡  (16)  

According to Sobczyk (2008), the naïve models can be used in short-term forecasting, when the 

constant systematic term can be distinguished and the random deviations are not substantial. The 

persistence model may be the best solution, when the time series describing the observed 

phenomenon is missing or is very short. Although it may seem to be fallible, the naïve models often 

perform comparably in reference to  much more elaborate models [41]. 
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4.2. Auto Regressive Moving Average Model (ARMA) 

Box an Jenkins (1970) introduced a step-by-step methodology for modelling and estimation of time 

series by use of the autoregressive (AR) and Moving Average (MA) models. The commonness of this 

method for prediction purposes is supported by wide application in economy processes modelling, 

since many of them depend their state in the past. The current explained value is expressed by a 

combination of finite number of its past values, or/and interchangeably, their random disturbances 

[24]. 

The AR and AM methods, as well as their junction (ARMA) are basing on the autocorrelation within the 

observed time series, which is going to be explained in the further part of this section. 

The autoregressive part of order p AR(p) is described by the equation 17 [42]: 

 𝑦𝑡 = 𝛿 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 +⋯+ ∅𝑝𝑦𝑡−𝑝 + 휀𝑡  (17)  

Where  ∅𝑝 are the model parameters, 𝛿 is a constant term and t  is the random variable of mean 

value equal to 0, and constant variance 𝜎2(see Equation 3). The p value represents the number of past 

values of y taken into consideration in the model. Successively, the MA(q) model of order q is given by 

the formulae [42]: 

 𝑦𝑡 = 𝛿 + 휀𝑡 + 𝜃1휀𝑡−1 + 𝜃2휀𝑡−2 +⋯+ 𝜃𝑞휀𝑡−𝑞  (18)  

where 𝜃𝑞 - parameters of q-order polynomial, with 휀𝑡−𝑞 random error terms as explanatory variables. 

In order to improve the fitting of the model to the realization of explained variable, the combination 

of the aforementioned models (equations 17 and 18) is implemented and represented by the mixed 

model ARMA(p,q) [42]: 

 

𝑦𝑡 = 𝛿 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 +⋯+ ∅𝑝𝑦𝑡−𝑝 

+휀𝑡−𝜃1휀𝑡−1 − 𝜃2휀𝑡−2 −⋯− 𝜃𝑞휀𝑡−𝑞 

(19)  

The ARMA(p,q) model uses the p past values of the observed quantity and q values of random error 

terms of the time series y. Successful adoption of the ARMA model entails the necessity of fulfilling the 

particular requirements of the method, as well as following the 3-step procedure: model identification, 

estimation of the parameters and model verification. To properly identify the model, the examined 

time series has to meet particular requirements. First of all, it has to be stationary (there is no trend 

observable and the variance is constant). Once the stationarity is not confirmed, the time series has to 

be modified to achieve stationarity. Secondly, the parameters of the model have to be determined by 

mean of computational methods (e.g. maximum likelihood estimation or non-linear least-squares 

estimation). Further, the estimated parameters have to be verified statistically for proving their 
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significance in the model. If the constructed model fulfils all the verification criteria, it can be applied 

for forecasting. Contrarily, if the evaluation of the model suggests that some of the parameters are not 

statistically significant or the model residuals manifest autocorrelation, the identification step has to 

be repeated and followed again until the model evaluation brings admissible results. The Box-Jenkins 

methodology is and iterative process, which graphically has been represented in the Figure 9 [42]. 

 

Figure 9 Box-Jenkins methodology flowchart 

4.2.1. Verification of stationarity 

As a fundamental feature of the times series subjected to ARMA models is its stationarity. The time 

series is considered as stationary if [42]: 

a) The expected value (arithmetic mean) is constant along the entire observation 

b) The value of the variance doesn’t change along the entire studied time series 

In some cases, the decision whether the observation is stationary or not can be made by analysing its 

plot visually. Nevertheless, sometimes this qualification has to be supported by other actions, for 

example, by analysing the autocorrelation function (ACF) of the series, which is going to be discussed 

in detail further in this section. Although, the proper interpretation of the autocorrelation function 

may require an experience of the model constructor [41]. 

Stationary time series should resemble the so-called “white noise” series of random errors 휀𝑡 , which 

perfectly fits to the ARMA model, because for all t [42]: 
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𝐸𝑥(휀𝑡) = 0 

𝑉𝑎𝑟(휀𝑡) = 𝜎
2 

If the process reveals lack of stationarity, it has to be modified. As one of the simplest methods  for 

making the process stationary is differencing, which creates a new time series made of differences 

between two subsequent observations in the series [41]: 

 ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 (20)  

In execution of the first stage of Box-Jenkins methodology, the visual analysis of the autocorrelation 

function constitutes an initial step. By viewing the ACF function one may determine whether the 

process is stationary and non-deterministic (e.g. does not show periodicity). The ACF function can be 

understood as the series corresponding to correlation coefficients between the explained variable and 

its k-steps delayed realizations [27]: 

 𝑟𝑘 =
∑ (𝑦𝑡 − �̅�)(𝑦𝑡+𝑘 − �̅�)
𝑛−𝑘
𝑡=1

∑ (𝑦𝑡 − �̅�)2
𝑛
𝑡=1

 (21)  

Proper interpretation of the ACF functions helps to identify the most appropriate model structure. In 

the literature, numerous leads can be found for adequate concluding in analysis of the ACF [27] 

Table 5 Leads for interpreting the course of ACF function [27]: 

Course of the ACF function Interpretation 

Decreasing exponentially AR part of the model is significant 

Decreasing to zero with sinusoidal pattern AR part of the model is significant 

Several peaks observed, after which the 
sudden drop occurs 

MA part of the model is significant 

Initially constant values, then decaying to 
zero 

Both MA and AR parts of the model are significant 

Increments observed periodically 
There exists seasonality. To use ARMA model, 
modify the time series to obtain white noise series 

ACF values oscillate around zero The series is random 

The function does not decrease Series is not stationary 

 

It has been decided that the exemplary process of ARMA(p,q) model estimation will be performed 

in this subsection for better understanding of the Box-Jenkins methodology. The data used for 

estimation was the hourly time series of SPOT market prices from Jan – November of the year 2016, 

both for the Polish and Portuguese case. 



29 
 

The MatLab internal function autocorr(ObservedSeries,numLags) returns the 

autocorrelation function plot for the variable y and predefined number of lags to analyse (numLags). 

In the literature, this plot often is named correlogram. The number of lags to analyse has been 

arbitrarily assumed to be 100. The plots of the ACF functions has been shown in the Figure 10: 

The blue lines on the chart represent the confidence intervals. The course of the plotted ACFs of the 

SPOT prices in both countries shows very slow decay, what, according to information in Table 4, 

suggests that the process is not stationary. Additionally, the considerable periodicity has been 

observed, being correspondent to the lag k equal to 24 hours.  

Following the Box-Jenkins algorithm (see Figure 9), detection of non-stationarity requires the 

modification of the time series. In order to do so, the analysed time series has been subjected to 

differencing, called also integration (Bielińska, 2007). Although, to remove the periodicity of the series, 

the SPOT prices series have been differenced by time-lag of 24 hours: 

 ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−24 (22)  

 

 

a 

b 

Figure 10 ACF function plots for electricity SPOT prices in Portugal (a) and Poland (b) 
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In the Figure 11 the integrated time series of the SPOT market prices have been shown for both 

countries. Simply speaking, from this point, the analysed time series consists of the results of 

subtraction of the SPOT price at time (t-24) from the price at time t. Analysing the Figure 11, the 

oscillation over 0 value can be observed, with no trend at the same time and with relatively constant 

volatility of the time series (white noise properties), which, however, is more noticeable in the case of 

TGE case.  In the Figure 12 the ACF function plot have been presented for the integrated time series of 

SPOT market prices.  

Figure 12 ACF function plots for electricity SPOT prices in Portugal (a) and Poland (b) 

Figure 11 Time series plots of integrated electricity SPOT prices in Portugal (b) and Poland (a) 

b 

a 

b 

a 
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By analysing the Figure 12 it can be observed that considerable autocorrelation occurs for lags up to 3 

in case a (Portugal) and up to 5 in case b (Poland), reaching markedly the values above 0.6 . The courses 

of the ACF functions for integrated processes in both cases reveal diminishing pattern. Summing up 

the outcomes of the performed integration, the modified time series can be considered as stationary, 

what allows to follow the next steps in the Box-Jenkins methodology. 

4.2.2. ARMA(p,q) polynomial orders. 

Besides the verification of stationarity of the series, the identification of the model requires also 

determining the orders p and q or AR and MA polynomials, respectively. One of the approaches to do 

this is to analyse the ACF plots together with PACF (Partial AutoCorrelation Function) and detect the 

number of lags which indicate the p and q values. The difference between the ACF and PACF comes 

from elimination of the influence of intermediary observations (from k=1 to k-1) [42].  

 𝑟𝑘𝑘 =

{
 
 

 
 𝑟1                                   𝑖𝑓 𝑘 = 1

 
𝑟𝑘 − ∑ 𝑟𝑘−1,𝑗 ∙ 𝑟𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝑟𝑘−1,𝑗 ∙ 𝑟𝑘
𝑘−1
𝑗=1

    𝑖𝑓 𝑘 = 2,3,…
 (23)  

Analysis of the PACF function may help only in determining the AR(p) model order (Bielińska 2007). 

The Matlab software includes also the tool for plotting PACF function parcorr(y,numLags). The 

plots of ACF function for integrated SPOT prices time series have been already shown in the Figure 12, 

while the PACF function courses for these series has been pictured in the Figure 13. 

When analysing the PACF plots, one may observe that in both cases, the only significantly outstanding 

lag is 1, optionally 2. Although there can be observed some partial autocorrelation for the lags 24 in 

a 

b 

Figure 13 PACF  function plots for  integrated series of electricity SPOT prices in Portugal (a) and Poland (b) 
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both cases, their inclusion in the model would require inclusion of all the intermediate lags, which will 

have no valuable information to the model. Unfortunately, the Matlab AR function term does not allow 

to choose one particular lag (e.g. k=24) without considering remaining 23 in the polynomial model.   

In the literature emphasis is put on the difficulty of proper interpreting the ACF and PACF functions 

when not having extensive experience. For this reason, the ultimate orders of the ARMA model are 

going to be found by means of iterative methods, due to the accessibility of computational software. 

The ranges of polynomial orders will constitute a domain for finding the ultimate, final polynomial 

orders in the next section. For every combination of the p and q values, the model parameters are 

going to be estimated by maximizing the likelihood function L (see section 3.4.3). The best model is 

characterized by the highest L function value for corresponding combination of p and q.  Although, it 

may occur that the best fit is obtained for very high-order polynomials, what is burdened by 

considerable computing time. Tough, the Akaike Information Criterion (AIC) has been introduced, 

which indicates the most accurate model with implementing the penalty for complexity (number of 

coefficients to estimate) [42]: 

 𝐴𝐼𝐶 = −2 log(𝐿) + 2𝑘 (24)  

where L stands for Likelihood function value and k for total number of coefficients to estimate. 

Alternatively, one may use the Bayesian Information Criterion (BIC), which is penalize the complexity 

to a greater extent: 

 𝐵𝐼𝐶 = −2 log(𝐿) + 𝑘𝑙𝑜𝑔(𝑁) (25)  

where N represents the sample size. Contrarily to the selection of the model by finding the highest 

value of L, the chosen model should have possibly the lowest value AIC or BIC.  

4.2.3. Estimation of ARMA(p,q) parameters 

Once the structure of the model is determined, the next step requires fitting the coefficients of 

polynomials shown in Formulae 21. As one of the most common methods for their estimation is the 

maximization of likelihood (Box and Jenkins, 1994). For the whole set of observation, the likelihood 

function L is defined, which reflects the probability of obtaining the model outputs exactly equal to the 

actual observations. Maximization of the likelihood function brings the values of maximum likelihood 

estimators, which implemented in the model give the highest probability of obtaining perfect fit of the 

model [42]. Finding the optimal values of parameters is most frequently conducted via iterative way, 

by means of computational techniques, which are going to be applied in this study – namely, internal 

Matlab functions. The essentials of the Matlab code generating a model structure, estimating 

polynomial parameters and calculating the AIC information has been shown in the Appendix C, 

together with explanatory comments. 
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Reassuming, for each pair of p and q (12 combinations available), the model is created, the parameters 

are estimated and AIC function calculated, which is prior criterion in selecting the p and q values. The 

Table 5 shows estimation results with highlight on the one with best performance of aicbic Matlab 

function. The same iterative process has been made for Polish and Portuguese SPOT prices integrated 

time series, respectively. The noticeable by the eye differences between the shape and course of 

analysed time series (see Figure 11) suggest to expect different outputs of the model identification 

process. The table on the next page shows the results of iterative process of model identification: 

Table 6 Extracted results of iterative search for the most information-contained ARMA (p,q) model structure 

TGE price SPOT time series OMIE price SPOT time series 

p order q order log(L) AIC BIC p order q order log(L) AIC BIC 

0 0 -31550.2 63104.42 63118.40 0 0 -28183.5 56370.91 56384.89 

0 1 -28369.3 56744.53 56765.50 0 1 -24705.3 49416.60 49437.57 

0 2 -26937.7 53883.38 53911.34 0 2 -22853.2 45714.40 45742.36 

0 3 -26467.8 52945.62 52980.57 0 3 -22040.2 44090.39 44125.33 

0 4 -26211.0 52433.99 52475.93 0 4 -21635.7 43283.31 43325.25 

0 5 -26095.3 52204.68 52253.61 0 5 -21401.7 42817.39 42866.31 

0 6 -26026.8 52069.55 52125.46 0 6 -21227.9 42471.85 42527.76 

1 0 -26078.5 52163.05 52184.01 1 0 -20828.0 41662.03 41683.00 

1 1 -25931.7 51871.36 51899.31 1 1 -20803.3 41614.67 41642.62 

1 2 -25927.4 51864.74 51899.69 1 2 -20801.0 41611.91 41646.85 

1 3 -25916.4 51844.89 51886.83 1 3 -20763.8 41539.59 41581.53 

1 4 -25916.3 51846.63 51895.55 1 4 -20760.4 41534.83 41583.75 

1 5 -25913.6 51843.15 51899.06 1 5 -20760.3 41536.52 41592.43 

1 6 -25913.5 51844.99 51907.89 1 6 -20759.5 41536.98 41599.88 

2 0 -25932.1 51872.25 51900.21 2 0 -20802.4 41612.77 41640.73 

2 1 -25929.1 51868.13 51903.08 2 1 -20802.4 41614.72 41649.66 

2 2 -25919.0 51850.06 51891.99 2 2 -20792.2 41596.30 41638.24 

2 3 -25915.8 51845.62 51894.55 2 3 -20760.1 41534.26 41583.19 

2 4 -25915.6 51847.24 51903.15 2 4 -20760.0 41536.10 41592.01 

2 5 -25913.5 51845.02 51907.93 2 5 -20693.8 41405.57 41468.47 

2 6 -25913.2 51846.31 51916.20 2 6 -20691.8 41403.54 41473.43 

 

In the above Table, the rows highlighted by blue colour correspond to the best performance model 

with regard to the AIC criterion. On the other hand, the yellow rows contain the lowest values of BIC 

criterion. Generally, both selection approaches point in the similar model structures. The final selection 

has been made basing on the BIC criterion, which puts more focus on the complexity (number of 

unknown parameters). Summarizing, the joined procedures of model identification and estimation of 

its parameters gave most information-contained structures: ARMA(1,3) for TGE and ARMA(2,5) for 

OMIE SPOT prices series, which would be subjected to evaluation procedure in the next subsection. 

4.2.4. ARMA(p,q) model evaluation 

In the literature, numerous methods for evaluation of the models can be found. One of the most 

commonly used is the t-test, which allow to verify the statistical significance of each of the estimated 

parameters in the model. This verification is based on testing the null hypothesis, equal to 0, stating 
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that the considered term (here polynomial coefficient) is insignificant versus the alternative one ( term 

is different from 0) [43]. 

H0 : βi = 0 

H1 : βi ≠ 0 

The acceptance/rejection of the null hypothesis can be made by comparing the t-test value with the 

critical value from the standardized t-test table. The considered term is statistically significant, if its t 

statistic value exceeds the critical value of t statistic for particular number of degrees of freedom (here: 

N-2) and confidence level, most frequently set to 95%. The results of the t-test have been shown for 

the models with the best BIC performance (Table 7). 

Table 7 t-test results for the ARMA model parameters 

TGE SPOT price time series OMIE SPOT price time series 

Parameter Value 
Standard 
error 

t-Statistic Parameter Value 
Standard 
error 

t-Statistic 

AR{1} 0.830 0.004 194.078 AR{1} 1.941 0,004 521.908 

MA{1} 0.202 0.005 38.652 AR{2} -0.944 0,004 -253.282 

MA{2} -0.008 0.005 -1.983 MA{1} -0.972 0.010 -102.178 

MA{3} -0.068 0.005 -12.406 MA{2} -0.071 0,014 -5.184 

 

MA{3} -0.094 0.012 -7.637 

MA{4} 0.095 0.013 7.367 

MA{5} 0.053 0.011 4.756 

 

For the number of degrees of freedom equal to 8014 (8016 observations in the learning dataset) and 

confidence level of 95%, the critical value of t-student statistic is equal to 1.96 [24]. Thus, the t-statistic 

values of estimated model’s coefficients should take the value higher than 1.96.  Comparing the values 

of t-statistic with the critical one, the conclusion is that all the estimated coefficients for both TGE and 

OMIE cases are statistically significant to the constructed model. 

4.3. Auto Regressive Moving Average model with External Input (ARMAX) 

The idea which stands behind the ARMAX model resembles the model construction process described 

in subsection 3.4, but with inclusion of the additional variable in the model. Hitherto, the ARMA model 

used only the lagged observations of explained variable. In the ARMAX approach, the additional 

information as the external variable can be provided to the model. In this case, the ARMA model 

expression described in Formulae 21 is extended in the following way [44]: 

 
𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯+ 𝑎𝑛𝑎(𝑡 − 𝑛𝑎) 

= 𝑏1𝑢(𝑡 − 1) +⋯+ 𝑏𝑛𝑏(𝑡 − 𝑛𝑏) + 휀(𝑡) 
(26)  
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+𝑐1휀(𝑡 − 1) +⋯+ 𝑐𝑛𝑐휀(𝑡 − 𝑛𝑐) 

where:  𝑎𝑛𝑎- coefficients of the AR part of the model (∅ in ARMA model ) 
𝑐𝑛𝑐- coefficients of the MA part of the model (𝜃 in ARMA model ) 

 𝑏𝑛𝑏- coefficients of the X part of the model 
 𝑛𝑎 , 𝑛𝑏 , 𝑛𝑐  – polynomial orders 

Formulae 28 can be also expressed in more compact, matrix form [44] : 

 𝐴(𝑧)𝑦(𝑡) = 𝐵(𝑧)𝑢(𝑡) + 𝐶(𝑧)𝑒(𝑡) (27)  

where the capital letters represent the matrices of coefficients of polynomials of each integral part of 

the model [44]: 

 

𝐴(𝑞) = 1 + 𝑎1𝑧
−1 +⋯+ 𝑎𝑛𝑎𝑧

−𝑛𝑎 

𝐵(𝑞) = 𝑏1𝑧
−1 +⋯+ 𝑏𝑛𝑏𝑧

−𝑛𝑏  

𝐶(𝑞) = 𝑐1𝑧
−1 +⋯+ 𝑐𝑛𝑐𝑧

−𝑛𝑐  

 

(28)  

where the z – lag operator is introduced, such that [44]: 

 𝑦𝑡𝑧
−𝑘 = 𝑦𝑡−𝑘 (29)  

 

Then, the set of coefficients to determine is: 

[𝑎1 𝑎2  ⋯ 𝑎𝑛𝑎  𝑏1 𝑏2  ⋯ 𝑏𝑛𝑏  𝑐1 𝑐2  ⋯ 𝑐𝑛𝑐 ]  

Despite the fact that the general principle of the ARMA and ARMAX models is similar, the algorithms 

used for their estimation differ markedly when using Matlab as an estimation tool. In creating the 

ARMA model, the series of subsequent steps (and corresponding functions) had to be executed in 

order to obtain the estimates of polynomial coefficients. In the case of ARMAX model preparation, the 

function armax(data,[na nb nc nk]) creates the model, as well as iteratively estimates the most 

robust and credible coefficients by means of “robustified quadratic prediction error criterion” 

(Mathworks, 2017).  

What also should be noted is the data input character – in the ARMA model case, all the operations 

have been made on double type vectors while the usage of ARMAX method in Matlab required 

converting the data into iddata, time-domain variable type [44].  

The evaluation of the ARMAX model can be carried out in the same way as in the case of ARMA model, 

what has been exhaustively described in the section 4.2. 
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4.4. Nonlinear Auto Regressive ANN Model 

The MatLab includes a wide range functions dealing with construction, training and simulation of the 

ANNs. For the purposes of this study, the specific case of time series ANN models are going to be 

examined as an alternative for the ARMA and ARMAX methods described in the former in previous 

subsection. The general idea of the NAR model resembles the concept of the ARMA model (Figure 14). 

The model output is determined basing on the previous values of the observed quantity. However, the 

modelling process id of a diametrically different character. 

𝑦(𝑡)  =  𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2) …  𝑦(𝑡 − 5)) 

In the above figure, a representative example of the NAR model has been shown for the ANN with 5 

input variables (here: 5 past values of the observation y). b letter stands for bias, while w represents 

the weights. A brief explanation of the key ANN issues has been explained in the succeeding 

subsection. 

4.4.1. Basic concepts 

Artificial Neural Networks (ANN) in principle of operation resemble human brain. The origins of the 

ANN took place in 1943, when the first Artificial Neuron model has been introduced by McCulloch and 

Pitts. Contemporarily, ANN are commonly used in statistics and in signal processing. Despite the 

advanced development of this branch of science, the range of ANNs application is continuously 

expanding [47]. 

The Neural Network consists of neurons, which are simple processors arranged in layers. The signals 

are processed and sent further to the succeeding layers, in which the task to solve is gradually 

simplified. Thanks to the parallel data processing within the layers, the set of primitive neurons 

constitute the learning-capable structure. Often, in the ANN nomenclature the word “neuron” is 

replaced by “unit”. The units are interconnected by links, which are attributed by particular numeric 

weight. The standard structure of the ANN consists of input units (vector of numbers provided by the 

Figure 14 Graphical representation of NAR model – 5 input variables and 5 hidden layers 
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user), hidden units (representing the intermediate calculations) and output units (vector of the model 

results) [47]. 

 In the literature, two main ANN structures can be pointed out: recurrent and feed-forward nets [47]. 

The former one assumes the versatility of the connection arrangements (the topology is arbitrary), 

while the latter structure is restricted by only one direction of the links. The special case of the feed-

forward ANN with no hidden layers is named perceptron.  The  graphical representation of a basic ANN 

unit and feed-forward network structure have been shown in the Figure 15. 

 

Where the x corresponds to the input signals to the network, while w is a weight assigned to particular 

input signal. Transfer function 𝜑 sums up the weighted signals (generates net input). The weights 

reflect the importance of a given signal in the model – the higher is the weight value, the more 

significant is the input signal in the process of output determination. Therefore, the weights can take 

both negative or positive values. The weights adjustment constitutes the “learning” process of the 

network. In the process of the network building, the following steps have to be made: (i) setting the 

number of units contributing in the network, (ii) determining the type of units (iii) defining the 

connection type between the units [47]. 

There are several approaches to the input signals processing by the activation function, which can be 

divided in two main forms: linear and non-linear. In the linear method, the weighted sum of the input 

signals is added to a so-called bias (threshold), which is a number with and individual weight as well, 

what gives the output signal to the succeeding layers. On the other hand, among the non-linear 

activation functions the most commonly used are: step function or sigmoid function [47]. 

The step function returns a certain value, if the input weighted sum exceeds the threshold value. 

Contrarily, if the summarised input doesn’t take the value above the threshold one, the step function 

returns different value. In the basic perceptron, the output values are 1 and 0, for the case of threshold 

exceeded and not, respectively. The sigmoid function (called also logistic function) can be expressed 

by the following equation: 

Figure 15 Graphical representation of the ANN unit and feed-forward ANN [47] 
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 𝜎(𝑡) =
1

1 + 𝑒−𝛽𝑡
 (30)  

Where t represents the input value and 𝛽 is a certain parameter influencing the shape of the function. 

The graphical representations of the step and sigmoid functions have been shown in the figure below. 

 

  

Figure 16 Step function and sigmoid function graphical examples [47] 

Besides the definition of the network architecture and selection of the activation function, the choice 

of network training algorithm has to be made as well in order to make the model complete. In general, 

the main goal of training algorithms is to set the values in the weights vector in the way allowing to 

obtain a minimum of a loss function, which reflects the quality of the model-to-reality fit. Since in most 

of the cases, the ANN models regard multiple variables, the training algorithm becomes a task of 

multidimensional optimization. The ANN learning algorithms are based on the iterative processes, 

where the inaccuracy of the model is mitigated gradually after each sequential step. Most often, the 

algorithm is stopped after satisfying so-called stopping criterion, which for instance may be a 

satisfactory value of the model error. Among many training algorithms available to apply in ANN, 

below, the most recognizable ones have been listed with the most important characteristics [49]: 

 Gradient descent – is featured by high simplicity, bases on the detection of the steepest 

decrease of the loss function by means of gradient. The size of the step made by the algorithm 

is training rate, which can be a fixed number or be internally optimized on the way of single 

iteration. As the main disadvantage of this method, the convergence-time is highlighted, 

especially for the loss functions with relatively slight fall. On the other hand, it is recommended 

for the nets dealing with numerous variables, because it does not require a lot of computing 

memory. 

 Newton’s method – in contrary to Gradient descent (first order - gradient method), the 

Newton’s method bases on the second order derivatives (Hessian matrix, explained further). 

The application of Hessian matrix allows to determine the searching directions more 
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accurately. This method requires considerably less steps to find a minimum in comparison with 

gradient method, however, requires much more computational effort, what is influenced by 

matrix operations. 

 Conjugate Gradient – Can be considered as the improved method of the gradient descent 

method, because the achievement of optimum is made in a faster way, keeping the simplicity 

of calculations on the unchanged level. 

 Levenberg-Marqardt – in principle, it works similarly as the Newton’s method, although, the 

Hessian (second order derivatives) matrix is approximated by Jacobian matrix. The Jacobian is 

a matrix composed of first-order derivatives of the loss function with respect to the 

parameters of the network. The training steps are influenced by damping factor. The limitation 

of this method is that it cannot be applied to any kind of loss function. Despite the 

approximation of the Hessian matrix by the Jacobian one, it still requires significant 

computational capabilities. For the purposes of the thesis, the LM algorithm will be used in 

modelling the SPOT prices – therefore, it has been explained more explicitly in the subsection 

below. 

4.4.2. Levenberg-Marqardt training algorithm  [45] [47]. 

 

The Levenberg-Marquardt (LM) algorithm is one of the most commonly used NN learning techniques. 

The weights modification by means of this method is made in a group manner, it is after providing all 

the learning vectors. It is characterised by high effectiveness in feedforward networks training, and 

combines the convergence of the Gauss-Newton algorithm with the fastest decline methods. 

In comparison with the conventional BP method, the LM algorithm features fast operation with 

simultaneous increased memory demand [45]. 

The LM training algorithm is based on the method for finding the roots of the Newton function. For 

the loss function f(x), the derivative in point x0  is defined, presented graphically in the Figure 17. 
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Figure 17 Graphical representation of the Newton function and its derivative at x0 [47] 

The derivative of the function f at x0 presented in the above figure can be expressed as the tangent of 

the created rectangular triangle: 

 𝑡𝑔(𝛼) =
𝑓(𝑥𝑖) − 0

𝑥𝑖 − 𝑥𝑖+1
= 𝑓′(𝑥𝑖) (31)  

Thus 

 
𝑓(𝑥𝑖)

𝑥𝑖 − 𝑥𝑖+1
= 𝑓′(𝑥𝑖) (32)  

By modification of the equation 32, the iterative step of the Gauss-Newton method for finding the 
roots can be expressed as follows: 

 𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 (33)  

In this case, finding minimum is related with finding the root of a derivative. If denoting f by g’, the 
Formulae 33 takes the following form: 

 𝑥𝑖+1 = 𝑥𝑖 −
𝑔′(𝑥𝑖)

𝑔′′(𝑥𝑖)
 (34)  

When considering the Newton’s minimisation for the n-dimensions, the equation 34 is globally 
represented by the formulae 35: 
 

 𝑊𝑖+1 = 𝑊𝑖 − 𝐻
−1(𝑊𝑖)∇𝑔(𝑊𝑖) (35)  

where: 𝐻−1(𝑊𝑖) - Hessian matrix, which corresponds to the g’’  derivative from the Formulae 34, 

∇𝑔(𝑊𝑖)– gradient, which corresponds to the g’ derivative from the Formulae 34. 

 𝐻𝑖𝑗 =
𝜕

𝜕𝑤𝑖

𝜕

𝜕𝑤𝑗
𝑔 (36)  
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The LM method is based on finding the direction of a vector p: 

 𝑝 = −(𝐽𝑇𝐽 + 𝜇𝐼)−1𝑔 (37)  

Were 𝐽 – Jacobi matrix, 𝜇 – regulation parameter. The Jacobi matrix and g vector are dependent on 

the network error E(w): 

 

 

𝑒(𝑊) = [

𝑒1(𝑊)
𝑒2(𝑊)
⋮

𝑒𝑀(𝑊)

]        𝑒𝑖 = [𝑦𝑖(𝑊) − 𝑑𝑖)]          𝐸(𝑊) =
1

2
∑ [𝑒𝑖(𝑊)]

2𝑀
𝑖=1  

(38)  

The Jacobi Matrix is then expressed as in Equation 39: 

 𝐽(𝑊) =

[
 
 
 
 
 
 
 
𝜕𝑒1
𝜕𝑊1

𝜕𝑒1
𝜕𝑊2

⋯
𝜕𝑒1
𝜕𝑊𝑛

𝜕𝑒2
𝜕𝑊1

𝜕𝑒2
𝜕𝑊2

…
𝜕𝑒2
𝜕𝑊𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑒𝑀
𝜕𝑊1

𝜕𝑒𝑀
𝜕𝑊2

…
𝜕𝑒𝑀
𝜕𝑊𝑛]

 
 
 
 
 
 
 

 (39)  

The g function can be defined in short form: 

 𝑔 = 𝐽𝑇𝑒 (40)  

The Hessian matrix is approximated according to the Newton’s method: 

 𝐻 ≈ 𝐽𝑇𝐽 (41)  

In the next step, the 𝜇𝐼 matrix is added in order to obtain a positively-defined matrix. The LM algorithm 

begins with setting relatively high values of the damping coefficient 𝜇, which is decreased every time 

when the obtained results indicated improvement (Newton method), or increased in the case of 

obtaining higher error values (gradient descent method). In simplified form, the LM algorithm is a set 

of the following actions [45]: 

1. Set the initial values of the 𝜇 parameter 

2. Provide the net with the vectors of learning data, calculate the net outputs, calculate the net 

error (38) 

3. Calculate the Jacobi matrix (39) 

4. Calculate new weight by means of the equation (37) 

5. Calculate the net output by means of the learning dataset and newly defined weights 

6. If the algorithm brought smaller error, the weights values should be kept and used again in the 

point 2 with decreased 𝜇 damping coefficient. If the results have worsened, the 𝜇 damping 

coefficient should be increased and the calculation should be repeated from the point 4. 
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7. The LM algorithm finds the solution, if the obtained error decreased, compared to previously 

determined value. 

The inconvenience of the LM method is that it works in a local manner, what means that there is 

no warranty of finding the global minimum of the goal function. As an additional disadvantage one 

may mention the computing memory demands – the LM method requires calculation and 

inversion of the Jacobi matrix of the error function. The dimensions of the Jacobi matrix are 

determined by the number of weights in the entire net. Although, this requirement is compensated 

by fast convergence rate [45]. 

For the purpose of this study, the trainlm Matlab function will be used for training the ANN time 

series model for electricity SPOT prices forecasting. 

4.5. Nonlinear Autoregressive ANN Model with External Input (NARX)  

The MatLab’s Naural Nets Library allows to choose the specific model type from many available. The 

NARX model differs from the NAR described in the section 3.6 by the availability of adding the external, 

independent input variable time series to the model. This solution could be interpreted as the non-

linear correspondent of the ARMAX model discussed in section 3.5. The principles , requirements and 

mechanisms of the ANNs described in the section devoted to NAR model apply in this case as well, 

with one distinction, which is the additional external input, what has been illustrated in the Figure 18. 

𝑦(𝑡)  =  𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2) …  𝑦(𝑡 − 5), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2) …  𝑥(𝑡 − 5) 

 
Figure 18 Graphical representation of NARX model – 10 input variables and 5 hidden layers 

Summarizing, the certain number past values of the x(t) and y(t) constitute the input to the ANN 

model, which further are weighted and processed in the hidden layers of the net, undergoing the 

training algorithm (in the case of this study – LM algorithm). 
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5. Results and discussion 

5.1. Available data 

The source of the data for SPOT prices forecasting is the ENTSOE were the numerous data about energy 

systems and markets is continuously updated. As the mission, the ENTSOE aims “to develop with the 

energy transition and the successes of European market integration” [38].  As one of the 

implementations of the mentioned goals, the transparency of the integrated energy systems is 

maintained by publishing up-to date energy systems data, what this study made use of. 

The data processed in this study constitute 4-time series: energy SPOT prices and day-ahead forecast 

of wind energy injected to the system– for both Portugal and Poland. The time range of the data is the 

entire calendar year 2016 with the fragmentation of 1 hour, what gives 8784 observations of each of 

the time series. To enable the direct comparison of the results, the TGE SPOT Polish market prices 

originally given in PLN currency were recalculated by the actual for a given hour EUR/PLN ratio given 

by the European Central Bank, what required the acquisition of the correspondent time series. In the 

Figure 19, the time series of wind generation forecasts have been shown for the calendar year 2016 in 

hourly fragmentation. 

The graphical representation of the wind generation forecasts reveals the irregularity of the observed 

quantities. Determination of a seasonal or periodical pattern is impossible; the process is characterised 

by randomness. On the other hand, the visualization of the SPOT prices in the same time domain allows 

to observe a regular oscillations of the market price values along a time. Additionally, the appearance 

of incidental peaks in values has been detected (Figure 20). 

Figure 19 Wind generation time series in Poland and Portugal for the calendar year 2016 
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Comparing visually both SPOT prices series, the Poland energy price denotes high volatility, while the 

electric energy prices in Portugal are more clustered around a constant value. Moreover, a slight 

increasing trend is noticeable in the OMIE energy prices, especially in second half of the analysed year. 

Since the time series reveal periodicity, what eliminates the direct application of ARMA and ARMAX 

models, all the forecasts will be made basing on differenced(integrated) time series by 24 hours lag 

(see Figure 11, Equation 22). 

To make all the models constructed in this study comparable, the division of the data has to be 

consistent. For this purpose, the time series has been decomposed into two sets: learning (from 

January until November) and validating (December). Following this approach, the forecasts are going 

to be estimated 1 step (1 hour) ahead for the total time-horizon of the entire December 2016 (744 

hours) 

5.2.  Forecast evaluation criterion 

As a measure of the forecasting quality, the Mean Absolute Percentage (MAPE) error is going to be 

used. The MAPE expresses the relative and absolute percentage deviations of the forecasted value 

from its realization, referred to the entire evaluated population [40]: 

 𝑀𝐴𝑃𝐸 = 100% ∙
1

𝑁
∑

|𝑦𝑡 − 𝑦𝑡
∗|

𝑦𝑡

𝑁

𝑡=1

 (42)  

where  𝑦𝑡 , 𝑦𝑡
∗ represent the values of the actual and forecasted quantity, respectively. 

 

 

Figure 20 TGE and OMIE SPOT prices in Poland and Portugal for the calendar year 2016 
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For having a perspective on the financial burden correspondent to the inaccuracy of the performed 

forecasting models, the total uncertainty of sales of the wind energy in December 2016 (744 hours) 

has been calculated according to the equation 43, under assumption that the entire wind energy is 

traded on the SPOT market: 

 𝑆𝑈 = 𝑀𝐴𝑃𝐸 ∙∑𝐸𝑡
∗ ∙ 𝑀𝑡

744

𝑡=1

 (43)  

Where SU – total sales uncertainty [EUR], 𝐸𝑡
∗– traded wind energy volume in an hour t [MWh], 𝑀𝑡  – 

SPOT market price in an hour t [EUR/MWH]. 

5.3. Forecasting approaches – case studies 

In this part, the forecasting results of the models presented in section 3, designed by means of the 

MatLab software are going to be presented. On the way of study of the six selected models (section 3) 

it occurred, that in the case of ARMA and ARMAX models there is a methodology which allows to 

determine the best model structure, containing the most valuable and reliable information (e.g. by use 

of Akaike criterion, t-statistic). In the case of ANN models, there is no universal recipe for finding the 

best net architecture, resulting in most accurate results. Therefore, to make the prediction evaluation 

as uniform as possible, it was decided to find the best structures in the iterative way for all the six 

models used in this study, by means of the MAPE as evaluation criterion. This means that the most 

accurate model structures will be found by running the forecasts iteratively for:  

a) varying p and q (ARMA) and varying 𝑛𝑎 , 𝑛𝑏 , 𝑛𝑐  (ARMAX) polynomial orders 

b) varying number of lags and hidden layers in the NAR and NARX models 

The representative result of a particular model will be the one characterised by the lowest value of 

MAPE in the period of December 2016. 

The external time series, used in ARMAX and NARX models contains the overall wind power generation 

prediction time series with the same time-fragmentation as the SPOT prices time series.  In order to 

answer the main question of this thesis, which is the influence of wind generation forecast on the SPOT 

market prices, it will be verified, whether this information as input to the extended models can be 

valuable in terms of improvement of the time series SPOT prices forecasts, what would prove the 

relation between these two quantities. 

Using the computational capabilities of the MatLab software and the possibility of looping of 

procedures executed in terms of particular projects, it was decided that the forecasting will be made 

by using all six models in the iterative manner, also with additional distinction on the training data set: 

static and dynamic. The static approach bases on a singular estimation of the model’s parameters 



46 
 

which are used in unchanged form for the entire prediction horizon (here - 1 month). On the other 

hand, in the dynamic approach, the model’s parameters are updated every prediction step, basing on 

modified learning dataset, which is shifted also by one step towards, respectively. 

For making the above clearer and more understandable, the Figure 21 shows the division of the 

forecasts, which will be carried out both for Poland and Portugal in breakdown into particular study 

cases. 

 

 

Figure 21 Schematic representation of the SPOT prices prediction cases 

Firstly, the prognoses will be created for the “static” cases iteratively, varying the number of lags used 

in the models. The results of the forecasts carried out in this way will be analysed for finding the model 

which will be featured by the lowest MAPE value of the prediction. Then, the number of lags 

characterising the static model with the lowest MAPE will be applied in the dynamic model. The same 

rule will apply for the number of hidden layers in the case of ANN models. 

5.4. Forecasting results 

In order to have a reference to the models constructed in this project, the persistence model has been 

simulated as well.  Applying the formulae described in equation 16 to the validation dataset (December 
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2016), the persistence model has been constructed and evaluated by obtaining the value of MAPE, 

which took the value of 6.92% in Poland and 4.50% in Portugal.  

At first glance, the achievement of the 4.5% MAPE in forecasting the Portuguese energy prices by 

means of naïve methods is considered as very effective. 

Applying all the forecasting assumptions, there will be carried out 32 independent simulations of the 

models in order to predict the hour-ahead SPOT prices in December 2016 as the forecasting period. 

This number is derived from the number of models applied in this study, number of learning dataset 

approaches (see Figure 21) and the fact that the analysis is comparative for two countries – Poland 

and Portugal. 

Since the ARMA model requires the stationarity of the subjected data, the SPOT prices time series have 

been integrated by subtraction of the price from hour h-24 from price in hour, according to Eq. 23. 

As the two main goals of this thesis were (i) examining the influence of wind energy forecast on SPOT 

prices and (ii) to what extent this relation takes place in the Polish and Portuguese markets. The 

forecasting result will be presented in order to reveal whether the models with external input variable 

(ARMAX and NARX) perform better in comparison with their counterparts without the wind generation 

forecast as an input variable (ARMA and NAR). Moreover, the analysis will include the comparison of 

the outcomes for the both countries, respectively. 

Figure 22 Persistence model SPOT price  forecasting results for Poland and Portugal 
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Figure 23 The breakdown of all forecasting simulations 

 

Despite the testing dataset is 1 month (744 hours), the visualization of the forecasting results will be 

limited to showing the first week of the December (168 hours) in order to keep transparency of the 

graphs and enable the reader to compare visually the real data and forecasts outputs. 

At the end of this chapter, the summarizing table will be included for cumulating of the results globally, 

what will allow to draw the overall conclusions and answer the main concerns of this thesis.  

The Appendix A contains the exemplary MatLab codes which have been developed for the purpose of 

model estimation and forecasting, representative for the ARMA, ARMAX, NAR and NARX model. 

The results are sequentially shown in the form of tables and adjacent plots, giving the information 

about the forecasting results of a given model for both countries. 

  

4 models

•ARMA

•ARMAX

•NAR

•NARX

4 learning dataset
approaches

•Static – 11 months (S1)

•Static – 1 month (S2)

•Dynamic – preceeding week (D1)

•Dynamic – preceeding 24 hours (D2)

2 countries
•Poland

•Portugal



49 
 

Table 8 ARMA model S1 case SPOT price  forecasting results for Poland and Portugal 

ARMA model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

p q p q 

S1 1 0 6.98% 5 4 3.66% 

 

 

 
 

Table 9 ARMA model S2 case SPOT price  forecasting results for Poland and Portugal 

ARMA model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

p q p q 

S2 1 0 6.90% 4 4 3.71% 
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Table 10 ARMA model D1 case SPOT price  forecasting results for Poland and Portugal 

ARMA model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

p q p q 

D1 1 2 7.04% 3 3 4.42% 

 

 
 

Table 11 ARMA model D2 case SPOT price  forecasting results for Poland and Portugal 

ARMA model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

p q p q 

D2 1 0 8.23% 3 3 6.09% 
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Comments: 

Comparing the paths of the SPOT prices time series in the representative first week of December 2016 

for both countries, a much higher volatility within a single day can be observed for Portugal. Case of 

ARMA model for the cases S1 and S2 in Poland, the optimal model parameters were p=1 and q=0, what 

means that the Moving Average part of the model is unnecessary in these cases and the model 

becomes simply AR (AutoRegresive) one. As regards Portugal, the best models structures were basing 

on higher-order polynomials, varying from 3 to 5. 

Despite the fact that the OMIE SPOT market prices show higher volatility, the time series ARMA model 

performed better on the Portuguese data, resulting in significantly lower MAPE values. 

Analysing all the ARMA simulations it was observed that the best results of the forecasts have been 

obtained for the S1 case (11 months of past data for estimation), both for TGE (MAPE 6.98%) and 

OMIE( MAPE 3.66%). The cases when the learning set was updated every proceeding step of 

forecasting brought less accurate outputs. 

Further, the simulation results have been shown for the ARMAX models. 

Table 12 ARMAX model S1 case SPOT price  forecasting results for Poland and Portugal 

ARMAX model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

na nb nc na nb nc 

S1 1 0 0 6.97% 5 4 5 3.57% 
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Table 13 ARMAX model S2 case SPOT price  forecasting results for Poland and Portugal 

ARMAX model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

na nb nc na nb nc 

S2 1 0 0 6.89% 5 2 5 3.57% 

 

 

 

Table 14 ARMAX model D1 case SPOT price  forecasting results for Poland and Portugal 

ARMAX model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

na nb nc na nb nc 

D1 2 2 0 6.79% 4 2 4 3.64% 
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Table 15 ARMAX model D2 case SPOT price  forecasting results for Poland and Portugal 

ARMAX model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS MAPE 

na nb nc na nb nc  

D2 1 0 1 6.81% 3 5 3 7.77% 

 

 
 

Comments: 

Comparing the parameters of the ARMAX model between two countries (na, nb, nc) the models 

working on the Portuguese market data performs the best for the higher polynomial orders. Similarly, 

as in the application of the ARMA model, a smaller error can be noticed for the Portuguese prices 

forecasts. 

Except the case D1, in the ARMAX models for forecasting TGE SPOT price the best results have been 

obtained when the nb parameter was equal to 0, what means that the polynomial corresponding to 

the external input value was equal to zero, what finally leads to the conclusion that in these cases the 

wind forecast time series was not useful (see Eq. 27). 

A significant deterioration of the forecast quality can be observed, comparing D1 and D2 cases of the 

OMIE price forecasting models, what is observable also on the attached graphs. 

Moreover, in some instances of the Polish market prices ARMAX models the value of parameter nc is 

zero as well, what actually transforms the ARMAX model into AR model, without inclusion of the wind 

energy forecast input. 
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Table 16 NAR model S1 case SPOT price  forecasting results for Poland and Portugal 

NAR model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

Delays 
Hidden 
layers 

Delays 
Hidden 
Layers 

S1 1 5 6.71% 5 1 3.74% 

 

 
 

Table 17 NAR model S1 case SPOT price  forecasting results for Poland and Portugal 

NAR model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

Delays 
Hidden 
layers 

Delays 
Hidden 
Layers 

S2 2 2 6.55% 4 5 3.71% 
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Table 18 NAR model D1 case SPOT price  forecasting results for Poland and Portugal 

NAR model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

Delays 
Hidden 
layers 

Delays 
Hidden 
Layers 

D1 2 3 7.54% 1 1 3.88% 

 

 
 

Table 19 NAR model D2 case SPOT price  forecasting results for Poland and Portugal 

NAR model 

CASE 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

Delays 
Hidden 
layers 

Delays 
Hidden 
Layers 

D2 3 4 9.83% 3 4 4.58% 
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Comments: 

Analysis of the NAR model revealed the most certain forecasts have been developed for the S2 case, 

which was featured by 1 month (November 2016) estimation dataset. Similarly to the ARMA and 

ARMAX models, the dynamic approaches (D1 and D2 cases) have not improved the forecasts results. 

This is contrary to the expectations for the OMIE case especially, since there was observable an 

increasing trend of the prices in the entire year were increasing (see Figure 20). The every-hour model 

parameters update has not enhanced the models performance. 

Following the remaining examined models, in the case of NAR model the more accurate forecast have 

been obtained for the Portuguese SPOT prices time series, unexpectedly because of the visibly higher 

volatility, comparing to the corresponding time series in Poland (see Figure 20). 

Analysing the outputs of the NAR model carried out for Polish dataset, a general conclusion is that the 

ARMAX and ARMA model reveal better accuracy overall. In the case of Portuguese market, this 

advantage is not observed in all the examined cases. 

 

 

Table 20 NARX model S1 case SPOT price  forecasting results for Poland and Portugal 

NARX model 

CASE 

POLAND PORTUGAL 

PARAMETERS 

MAPE 

PARAMETERS 

MAPE 
delays 

Ext. Input 
 delays 

hidden 
 layers 

delays 
Ext. Input 
 delays 

hidden 
 layers 

S1 3 5 2 6.74% 5 2 5 3.63% 
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Table 21 NARX model S2 case SPOT price  forecasting results for Poland and Portugal 

NARX model 

CASE 

POLAND PORTUGAL 

PARAMETERS 

MAPE 

PARAMETERS 

MAPE 
delays 

Ext. Input 
 delays 

hidden 
 layers 

delays 
Ext. Input 
 delays 

hidden 
 layers 

S2 5 5 2 6.63% 4 5 3 3.64% 

 

 
 

Table 22 NARX model D1 case SPOT price  forecasting results for Poland and Portugal 

NARX model 

CASE 

POLAND PORTUGAL 

PARAMETERS 

MAPE 

PARAMETERS 

MAPE 
delays 

Ext. Input 
 delays 

hidden 
 layers 

delays 
Ext. Input 
 delays 

hidden 
 layers 

D1 2 1 1 8.12% 5 5 5 3.67% 
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Table 23 NARX model D2 case SPOT price  forecasting results for Poland and Portugal 

NARX model 

CASE 

POLAND PORTUGAL 

PARAMETERS 

MAPE 

PARAMETERS 

MAPE 
delays 

Ext. Input 
 delays 

hidden 
 layers 

delays 
Ext. Input 
 delays 

hidden 
 layers 

D2 4 4 4 8.78% 5 4 1 4.20% 

 

 
 

Comments: 

Comparison of the forecasting results among the cases set, a conclusion has been derived that the 

worst accuracy reflected in the highest MAPE value has been observed for the D2 case, which was 

using only 24 past records of the price for the model estimation. Forecasting process has been 

accomplished most successfully with use of wider range of data (S1 and S2 cases), for both Portugal 

and Poland. 

Tracking the curves representing the forecasting outcomes versus actual data it can be noted that the 

models in some instances predict significantly excessive peaks, what certainly influences the worsened 

overall MAPE value in the horizon of whole December 2016. 

For the purpose of summarizing the forecasting results and direct comparison of particular models 

with and without the “X” extension as wind generation forecast, the cumulative tables have been 

shown for all the analysed models and subsequent cases altogether. 

  



 
 

Table 24 Comparison of ARMA and ARMAX SPOT prices forecasting models 

POLAND 

CASE 

ARMA ARMAX 
SUARMA-SUARMAX 

PARAMETERS 
MAPE 

SUARMA PARAMETERS 
MAPE 

SUARMAX 

p q [EUR] na nb nc [EUR] [EUR] 

S1 1 0 6.98%       3 448 565     1 0 0 6.97%          3 443 624     - 

S2 1 0 6.90%       3 409 040     1 0 0 6.89%          3 404 099     - 

D1 1 2 7.04%       3 478 209     2 2 0 6.79%          3 354 693                                123 516     

D2 1 0 8.23%       4 066 145     1 0 1 6.81%          3 364 574     - 

PORTUGAL 

CASE 

ARMA ARMAX 
SUARMA-SUARMAX 

PARAMETERS 
MAPE 

SUARMA PARAMETERS 
MAPE 

SUARMAX 

p p [EUR] na nb nc [EUR] [EUR] 

S1 5 4 3.66%       2 262 710     5 4 5 3.57%          2 207 070                                   55 640     

S2 4 4 3.71%       2 293 622     5 2 5 3.57%          2 207 070                                   86 552     

D1 3 3 4.24%       2 621 282     4 2 4 3.64%          2 250 346                                370 936     

D2 3 3 6.09%       3 765 002     3 5 3 7.77%          4 803 623      -  

 

Table 25 Comparison of NAR and NARX SPOT prices forecasting models 

POLAND 

CASE 

NAR NARX 
SUNAR-SUNARX 

PARAMETERS 

MAPE 

SUNAR PARAMETERS   

MAPE 

SUNARX 

delays 
hidden 
 layers 

[EUR] delays 
ex. 

Input 
 delays 

hidden 
 layers 

[EUR] [EUR] 

S1 1 5 6.71% 3 315 168     3 5 2 6.74% 3 329 990     - 

S2 2 2 6.55% 3 236 118     5 5 2 6.63% 3 275 643     - 

D1 2 3 7.54% 3 725 241     2 1 1 8.12% 4 011 798      -  

D2 3 4 9.83% 4 856 647     4 4 4 8.78% 4 337 880     518 767 

PORTUGAL 

CASE 

NAR NARX 
SUNAR-SUNARX 

PARAMETERS 

MAPE 

SUNAR PARAMETERS 

MAPE 

SUNARX 

delays 
hidden 
 layers 

[EUR] delays 
ex. 

Input 
 delays 

hidden 
 layers 

[EUR] [EUR] 

S1 5 1 3.74% 2 312 169     5 2 5 3.63% 2 244 164     68 005 

S2 4 5 3.71% 2 293 622     4 5 3 3.64% 2 250 346     43 276 

D1 1 1 3.88% 2 398 720     5 5 5 3.67% 2 268 893     129 828 

D2 3 4 4.58% 2 831 479     5 4 1 4.20% 2 596 553     234 926 
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Comments: 

In the Table 24 and Table 25, all the simulation results have been shown. The rows highlighted by light-

blue colour indicate a situation, when the model with external input variable (wind generation 

forecast) performed better than the same model but basing only on the past values of SPOT prices. 

Despite the better forecast accuracy of the ARMAX model than the ARMA model in the S1, S2 and D2 

cases in Poland, the corresponding results have not been highlighted – it should be pointed that in 

these cases the best performing ARMAX model structure was with nb polynomial order equal to 0, 

what means that the ARMAX model does not include the external variable at all and actually becomes 

ARMA model. Therefore, the improvement of these predictions cannot be associated with addition of 

the wind power forecast information. Additionally, in the right-adjacent column the difference 

between the Sales Uncertainty of the models without and with inclusion of the wind generation 

forecast has been calculated – as it can be observed, the sales uncertainty decrease varied between 

55 000 EUR to around 235 000 EUR in the case of models based on Portuguese data. 

Recalling the reference forecasts of the persistence model (6.92% MAPE in Poland and 4.50% in 

Portugal) it can be noticed that in the case of Poland the obtained models rarely perform better that 

the persistence one, while in Portugal the MAPE obtained by time series models is often below 4%. 

Comparing country-to-country, it can be observed that the wind generation forecast is valuable for 

predicting the SPOT prices in Portugal, because in 7 out of 8 cases the “X” model returned more 

accurate model than its counterpart without information of wind generation forecast (ARMA vs 

ARMAX and NAR vs NARX). In the case of predicting the TGE SPOT market prices, only in 2 instances 

out of 8 the addition of wind production forecasts revealed to improve the model output. The 

cumulated simulation results show that the wind generation forecasts have an influence on the SPOT 

market prices in Portugal, which can be implemented in the mathematical models. In the case of Polish 

market, this statement cannot be made. As a source of this difference the author considers the 

significant divergence in the RES (and in consequence wind) generation share in the total electricity 

production. In the case of Portugal, the relative amount of the energy injected to the system from 

windmills is much higher, thus, may have a greater impact on the market behaviour. 

As a general tendency, the OMIE SPOT market prices occurred to be more predictable than the TGE 

time series, what is expressed by one-sided difference of the MAPE measure in all the cases in favour 

of the Portuguese case. 

Moreover, when comparing the results obtained from the four models for the individual learning 

dataset approaches (S1, S2, D1 and D2), a global observation is that the models of “static” character, 

it is being estimated once on a fixed dataset, resulted in obtaining lower errors. As the reason, the 
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author assumes the instantaneous peaks of the prices occurring within a week or a day, what may 

remarkably influence the estimation and in consequence burden the model’s prediction accuracy. In 

the situation when the time range of the data was wider (1 month, 11 months), this impact was 

affection was mitigated. 

At this point it has to be highlighted that the above results obtained on the way of applying time series 

models, sometimes requiring several hours to conduct the simulation, in some instances performed 

worse than the persistence model (described in section 3.2), which for the TGE prices resulted in MAPE 

equal to 6.92% and for OMIE prices – 4.50%. The most accurate forecast for the TGE prices have been 

achieved by NAR model S2 case (6.55%), while for the OMIE prices by ARMAX model S1 case (3.55%). 
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6. Conclusions 

On the way of literature study for the purposes of this thesis, a wide range of models for prediction of 

the wind energy has been found, often leading to obtain promising results. Most of these models were 

dedicated for forecasting the production of the wind energy by individual windfarms, or were 

aggregated for a region, where the windmills were in dense allocation. Despite the fact that the 

performance of forecasts for exemplary windfarms reveals satisfactory uncertainty, the aggregation of 

these predictions to the global (overall national level) scale results in significant forecasting errors, 

based on calculations made by use of ENTSOE platform. The remarkable discrepancies have been 

observed for both analysed countries. Analysis of the wind forecasts error distribution revealed that 

there exists a preference in underestimation of the wind generation forecast, i.e. the forecast more 

often predicted lower values than the actual ones. Additional analysis (Theil Divergence) revealed that 

the most of the wind generation forecasts uncertainty is influenced by inappropriate detection of 

switching the direction of actual trend. 

Calculation of the financial losses led to the conclusion that the uncertainty of the wind energy 

production planning/forecasting lead to remarkable potential income losses for the wind energy 

producers, reaching millions of EUR in global(national) scale. However, a distinction has to be 

emphasised when comparing the results for Poland and Portugal – despite the fact that in overall, the 

wind generation forecast deviations resulted in financial losses in both countries, in Poland, in over 

half of the instances (examined hours of year 2016), the spread between the BM price and SPOT price 

resulted in additional income, compared to the situation where the perfectly planned production was 

sold only in the SPOT market. In other words, there exists a space for market speculation in Poland. In 

Portugal, this opportunity is limited – the beneficial spread was observed sporadically. The difference 

between Poland and Portugal comes from different BM pricing; in Poland, there is a single balancing 

price, the same for surplus/deficiency of produced energy, while on the other hand, in Portugal there 

are two separate BM prices, depending whether the producer exceeded/not completed the 

production plan. 

Finally, the series of forecasts of SPOT market prices in Poland and Portugal using four different models 

allowed to conclude that the forecasted wind power injection to the system influences the day-ahead 

prices in Portugal in way possible to be modelled, what has been proven by improved accuracy of the 

prediction errors, what translated into significant reduction of the wind energy sale uncertainty, 

reaching in the extreme case around 235 000 EUR in Portugal for the period of December 2016. On the 

other hand, the same cannot be stated for Poland, where the models with inclusion of the wind 
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generation forecasts have not revealed improvement. Contrary to the initial expectations of the 

author, the advantage of Neural Network models over polynomial-based models is not inequivocal. 

In the Appendixes attached in the end of this document, the forecasting results within selected ranges 

of iteration have been shown, together with exemplary Matlab codes written for the purpose of this 

study. 

 

  



65 
 

Future Work 

The presented study, based on basic models implemented in the accessible tools of Matlab software 

shown a potential of the wind generation forecast as a variable for predicting the electricity market 

prices, especially in the case of Portugal. As the expansion of the following project, the development 

of the hereby presented models by means of peak-detecting procedures and inclusion of more external 

key-variables (for example total load in the system) is considered, what could further improve the SPOT 

price forecasts. 

The comparative analysis carried out within this thesis revealed a potential of commercial application 

– for example, in Poland, one can find offers providing IT solutions for performing predictions in the 

Iberian market. The analysis focused on detection of main differences among two individual market 

systems may be desirable from the perspective of comparison of commercial IT forecasting tools. 

In the present thesis, the forecasts have been made in one step ahead prediction manner. Further 

work on this topic could include the influence of extended forecasting horizon on the accuracy of the 

obtained models (2, 3 hours ahead). 

To make the results comparable between Poland and Portugal, the Polish prices had to be recalculated 

by the PLN/EUR ratio, which is a subject of the market dynamics – therefore, it was suggested to the 

author that the analysis of the influence of the PLN/EUR currency on the obtained SPOT market prices 

forecasting should be verified. 
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Appendix A – SPOT prices forecasting results for selected iteration ranges 

ARMA model S1 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

p q p q 

1 0 6.98% 3 3 3.74% 

1 1 7.04% 3 4 5.56% 

1 2 7.08% 3 5 3.71% 

1 3 7.15% 4 0 3.75% 

1 4 7.15% 4 1 3.75% 

3 0 7.06% 5 3 3.71% 

3 1 7.10% 5 4 3.66% 

3 2 7.15% 5 5 3.67% 

 

ARMA model S2 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

p q p q 

1 0 6.90% 3 3 3.73% 

1 1 7.03% 3 4 3.76% 

1 2 7.13% 3 5 3.76% 

2 4 7.18% 5 1 3.73% 

2 5 7.41% 5 2 3.77% 

3 0 7.16% 5 3 3.75% 

3 1 7.19% 5 4 3.74% 

3 2 7.20% 5 5 5.35% 

 

ARMA model D1 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

p q p q 

0 1 15.13% 3 3 4.24% 

0 2 10.77% 3 4 4.31% 

1 0 7.34% 3 5 5.85% 

1 1 7.53% 4 3 4.36% 

1 2 7.04% 4 4 5.99% 

2 0 7.37% 4 5 6.30% 

2 1 9.60% 5 3 5.72% 

2 2 8.10% 5 4 6.04% 
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ARMA model D2 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

p q p q 

0 1 15.57% 3 3 6.09% 

0 2 12.78% 3 4 6.60% 

1 0 8.23% 3 5 6.30% 

1 1 9.21% 4 3 6.36% 

1 2 9.39% 4 4 6.29% 

2 0 9.11% 4 5 6.60% 

2 1 10.14% 5 3 6.14% 

2 2 11.96% 5 4 6.51% 

 

ARMAX model S1 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

na nb nc na nb nc 

0 5 4 8.10% 5 4 2 3.67% 

0 5 5 7.82% 5 4 3 3.61% 

1 0 0 6.97% 5 4 4 3.60% 

1 0 1 7.03% 5 4 5 3.57% 

1 0 2 7.07% 5 5 0 3.68% 

1 0 3 7.13% 5 5 1 3.68% 

1 0 4 7.12% 5 5 2 3.66% 

1 0 5 7.12% 5 5 3 3.67% 

 

ARMAX model S2 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

na nb nc na nb nc 

0 5 4 8.15% 5 2 1 3.68% 

0 5 5 7.85% 5 2 2 3.68% 

1 0 0 6.89% 5 2 3 3.60% 

1 0 1 7.00% 5 2 4 3.72% 

1 0 2 7.09% 5 2 5 3.57% 

1 0 3 7.14% 5 3 0 3.66% 

1 0 4 7.14% 5 3 1 3.68% 

1 0 5 7.17% 5 3 2 3.68% 
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ARMAX model D1 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

na nb nc na nb nc 

2 0 1 6.85% 3 5 5 6.54% 

2 0 2 6.91% 4 2 2 3.76% 

2 1 0 6.84% 4 2 3 3.81% 

2 1 1 6.91% 4 2 4 3.64% 

2 1 2 6.94% 4 2 5 3.70% 

2 2 0 6.79% 4 3 2 3.80% 

2 2 1 6.84% 4 3 3 3.67% 

2 2 2 6.83% 4 3 4 5.47% 

 

ARMAX model D2 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

na nb nc na nb nc 

0 2 1 21.25% 3 3 3 140.26% 

0 2 2 13.81% 3 3 4 96.03% 

1 0 0 6.85% 3 3 5 131.19% 

1 0 1 6.81% 3 4 3 92.02% 

1 0 2 20.10% 3 4 4 47.73% 

1 1 0 7.60% 3 4 5 47.13% 

1 1 1 7.44% 3 5 3 7.77% 

1 1 2 33.79% 3 5 4 169.53% 

 

NAR model S1 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

Delays Hidden layers Delays Hidden layers 

1 1 6.82% 4 3 3.74% 

1 2 6.83% 4 4 3.75% 

1 3 6.96% 4 5 3.77% 

1 4 6.99% 5 1 3.74% 

1 5 6.71% 5 2 3.74% 

2 1 7.09% 5 3 3.77% 

2 2 6.86% 5 4 3.74% 

2 3 10.90% 5 5 3.77% 
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NAR model S2 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

Delays Hidden layers Delays Hidden layers 

1 5 7.22% 4 1 3.73% 

2 1 6.66% 4 2 3.74% 

2 2 6.55% 4 3 3.75% 

2 3 6.69% 4 4 3.74% 

2 4 6.76% 4 5 3.71% 

2 5 6.86% 5 1 3.95% 

3 1 7.00% 5 2 3.71% 

3 2 6.93% 5 3 3.79% 

 
 

NAR model D1 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

Delays Hidden layers Delays Hidden layers 

2 1 8.57% 1 1 3.88% 

2 2 9.06% 1 2 4.21% 

2 3 7.54% 1 3 4.04% 

2 4 8.13% 1 4 4.05% 

2 5 8.45% 1 5 4.13% 

3 1 8.42% 2 1 4.04% 

3 2 8.77% 2 2 3.93% 

3 3 8.67% 2 3 3.94% 

 
 

NAR model D2 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

Delays Hidden layers Delays Hidden layers 

3 1 11.58% 2 4 5.52% 

3 2 12.38% 2 5 4.89% 

3 3 10.86% 3 1 5.38% 

3 4 9.83% 3 2 5.63% 

3 5 11.43% 3 3 4.77% 

4 1 11.87% 3 4 4.58% 

4 2 13.24% 3 5 5.23% 

4 3 12.09% 4 1 5.52% 
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NARX model S1 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

delays Ex. Input delays Hidden layers Delays Ex. Input delays Hidden layers 

3 1 2 6.88% 5 3 4 3.64% 

3 2 2 6.91% 5 4 4 3.67% 

3 3 2 7.10% 5 5 4 3.70% 

3 4 2 7.01% 5 1 5 3.64% 

3 5 2 6.74% 5 2 5 3.63% 

3 1 3 6.82% 5 3 5 3.69% 

3 2 3 7.76% 5 4 5 3.64% 

3 3 3 7.14% 5 5 5 3.67% 

 
 

NARX model S2 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

delays Ex. Input delays Hidden layers Delays Ex. Input delays Hidden layers 

5 2 2 16.50% 4 4 2 3.76% 

5 3 2 7.45% 4 5 2 3.70% 

5 4 2 9.89% 4 1 3 3.70% 

5 5 2 6.63% 4 2 3 3.76% 

5 1 3 7.65% 4 3 3 3.69% 

5 2 3 6.81% 4 4 3 3.75% 

5 3 3 7.40% 4 5 3 3.64% 

5 4 3 7.71% 4 1 4 3.70% 

 
 

NARX model D1 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

delays Ex. Input delays Hidden layers Delays Ex. Input delays Hidden layers 

1 4 5 8.89% 5 3 4 3.93% 

1 5 5 9.53% 5 4 4 3.96% 

2 1 1 8.12% 5 5 4 3.88% 

2 2 1 9.24% 5 1 5 3.94% 

2 3 1 8.92% 5 2 5 3.85% 

2 4 1 9.09% 5 3 5 3.94% 

2 5 1 8.93% 5 4 5 3.70% 

2 1 2 8.50% 5 5 5 3.67% 
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NARX model D2 case 

POLAND PORTUGAL 

PARAMETERS 
MAPE 

PARAMETERS 
MAPE 

delays Ex. Input delays Hidden layers Delays Ex. Input delays Hidden layers 

4 2 4 11.21% 5 2 1 5.56% 

4 3 4 11.31% 5 3 1 5.09% 

4 4 4 8.78% 5 4 1 4.20% 

4 5 4 10.27% 5 5 1 5.10% 

4 1 5 10.79% 5 1 2 5.89% 

4 2 5 11.82% 5 2 2 5.03% 

4 3 5 10.44% 5 3 2 4.77% 

4 4 5 11.04% 5 4 2 4.79% 
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Appendix B – MatLab exemplary codes developed for the purpose of forecasting models. 

Static  ARMA model 

W=zeros(744,1); %model results matrix pre-definition 
MAPEs=zeros(25,3); %matrix with MAPE values 
m=0; %auxiliary variable 
likelihood=zeros(25,2); %matrix with values of likelihood function 

h = waitbar(0,'please wait...'); 

  
for i=0:5 %order of AR model 
   for j=0:5 %order of AM model 

     
      model=arima(i,0,j); 
        

[estmdl,EstParamCov,logL,info]=estimate(model,TGE_SPOT_PL_diff(1:8016)); 
      m=m+1; 
      waitbar(m / 27) 
      akaike(m,1)=i; 
      akaike(m,2)=j; 
      akaike(m,3)=logL; 
      [aic,bic]=aicbic(logL,i+j+2,8016); 
      akaike(m,4)=aic; 
      akaike(m,5)=bic; 
      likelihood(m,1)=logL; 
      likelihood(m,2)=i+j+2; 
         for u=1:744    %forecasting loop 
             sample=TGE_SPOT_PL_diff((1+u): (8015+u)); 
             result=forecast(estmdl,1,'Y0',sample); 
             W(u)=result; 
         end 

       
       FOR_TGE_SPOT_PL=TGE_SPOT_PL(7993:8736)+W; 
       sum=0; 

        
         for u=1:744 % calculation of total error 

err=abs(TGE_SPOT_PL(8016+u)-   

FOR_TGE_SPOT_PL(u))/TGE_SPOT_PL(8016+u); 
            sum=sum+err; 
        end 

        
      MAPE=sum/744; 
      MAPEs(m,1)=i; 
      MAPEs(m,2)=j; 
      MAPEs(m,3)=MAPE; 

        
   end   
end 
close(h) 

       
plot(FOR_TGE_SPOT_PL(1:168)) 
hold on 
plot(TGE_SPOT_PL(8017:8184)) 
title('TGE SPOT prices in 1st week of Dec 2016 - ARMA model S1 case') 
ylabel('price, EUR/MWh') 
xlabel('hours') 
legend('forecasted','actual') 
filename = 'ARMA_S1_PL.xlsx'; 
xlswrite(filename,MAPEs); 
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Dynamic ARMAX model 

W=iddata(744,[],1); 
MAPEs=zeros(27,4); 
m=0; 
%transformation of data from double to idd type 
totdat=iddata(TGE_SPOT_PL_diff,FOR_wind_gen_PL); 
data=iddata(TGE_SPOT_PL_diff(1:8016),FOR_wind_gen_PL(1:8016),1); 
val_data=iddata(TGE_SPOT_PL_diff(8017:end),FOR_wind_gen_PL(8017:end),1); 

  
h = waitbar(0,'Please wait...'); 
AIC_BIC=zeros(125,5);% Akaike and Bayesian information matrix pre-

definition 
for i=0:5 %order of A polynomial 
  for j=0:5 %order of B polynomial 
       for k=0:5 %order of C polynomial 

  
            for u=1:744 

            data=iddata(TGE_SPOT_PL_diff(8015+u-

168:8015+u),FOR_wind_gen_PL(8015+u-168:8015+u),1); 
            

val_data=iddata(TGE_SPOT_PL_diff(8017:end),FOR_wind_gen_PL(8017

:end),1); 

            
            model=armax(data,[i j k 0]); %model estimation functio 
              akaike=model.report.fit.AIC; 
              bayesi=model.report.fit.BIC; 
              AIC_BIC(m,4)=akaike; 
              AIC_BIC(m,5)=bayesi; 
              AIC_BIC(m,1)=i; 
              AIC_BIC(m,2)=j; 
              AIC_BIC(m,3)=k 
            results=predict(model,val_data,1); 
            res=results.y(:,1);%transform from idd data to double 

            wynik=res(1:744)+TGE_SPOT_PL(7993:8736); 
            end 
      sum=0; 
      m=m+1;        
      waitbar(m/27) 

       
        %calculation of the forecasting errors 
        for u=1:744 
        err=abs(TGE_SPOT_PL(8016+u)-wynik(u))/TGE_SPOT_PL(8016+u); 
        sum=sum+err; 
        end 

        
       MAPE=sum/744; 
       MAPEs(m,1)=i; 
       MAPEs(m,2)=j; 
       MAPEs(m,3)=k; 
       MAPEs(m,4)=MAPE; 
       end 
  end 
end 
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Static NAR model 

%   adjust time series to model archotecture 
T = tonndata(TGE_SPOT_PL_diff,false,false); 
MAPEs=zeros(25,3); 
h = waitbar(0,'PLease wait...'); 
m=0; 
for i=1:5 %number of delays 
    for j=1:5 %number of hidden layers 

         
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation.  
feedbackDelays = 1:i; 
hiddenLayerSize = j; 
net = narnet(feedbackDelays,hiddenLayerSize,'open',trainFcn);  
% Prepare the Data for Training and Simulation 
 [x,xi,ai,t] = preparets(net,{},{},T);  
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 90/100; 
net.divideParam.valRatio = 8/100; 
net.divideParam.testRatio = 8/100; % 8% of total data is one month, Dec 
% Train the Network 
[net,tr] = train(net,x,t,xi,ai);  
% Test the Network 
y = net(x,xi,ai); 
performance = perform(net,t,y); 

  
wyn=transpose(cell2mat(y)); %transform from cell to double data 

  
m=m+1; 
waitbar(m/25); 
raz=TGE_SPOT_PL(7993:8736); 
dwa=wyn(end-743:end); 
    FOR_TGE_SPOT_PL=raz+dwa; 
       sum=0; 
       %calculation of the error 
       for u=1:744 
       err=abs(TGE_SPOT_PL(8016+u)-FOR_TGE_SPOT_PL(u))/TGE_SPOT_PL(8016+u); 
       sum=sum+err; 
       end 

        
      MAPE=sum/744; 
      MAPEs(m,1)=i; 
      MAPEs(m,2)=j; 
      MAPEs(m,3)=MAPE; 
    end 
end 

  
close(h)        

  
plot(FOR_TGE_SPOT_PL(1:168)) 
hold on 
plot(TGE_SPOT_PL(8017:8184)) 
title('TGE SPOT prices in 1st week of Dec 2016 - NAR model S1 case') 
ylabel('price, EUR/MWh') 
xlabel('hours') 
legend('forecasted','actual') 

  
filename = 'NAR_S1_PL.xlsx'; 
xlswrite(filename,MAPEs); 
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Dynamic NARX model 

%   FOR_wind_gen_PL - input time series. 
%   TGE_SPOT_PL_diff - feedback time series.  
X = tonndata(FOR_wind_gen_PL,false,false); 
T = tonndata(TGE_SPOT_PL_diff,false,false); 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 
MAPEs=zeros(125,4); 
h = waitbar(0,'PTease wait...'); 
m=0; 

  
for i=1:5 %number of delays 
    for k=1:5%feedback delays 
        for j=1:5 %number of hidden layers 

             
            for u=1:744 

             
            X = tonndata(FOR_wind_gen_PL(8014+u-168:8016+u),false,false); 
            T = tonndata(TGE_SPOT_PL_diff(8014+u-168:8016+u),false,false); 

          
% Create a Nonlinear Autoregressive Network with External Input 
inputDelays = 1:k; 
feedbackDelays = 1:i; 
hiddenLayerSize = j; 
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn); 
% Prepare the Data for Training and Simulation 
 [x,xi,ai,t] = preparets(net,X,{},T);  
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 90/100; 
net.divideParam.valRatio = 5/100; 
net.divideParam.testRatio = 5/100; 
% Train the Network 
[net,tr] = train(net,x,t,xi,ai); 
% Test the Network 
y = net(x,xi,ai); 
performance = perform(net,t,y); 
wy=transpose(cell2mat(y)); %transform from cell to double type data 
wyn(u,1)=wy(end,1); 

  
            end 

  
raz=TGE_SPOT_PL(7993:8736); 
dwa=wyn(end-743:end); 
FOR_TGE_SPOT_PL=raz+dwa;    
       m=m+1; 
       sum=0; 
       waitbar(m/125) 
       for u=1:744 
       err=abs(TGE_SPOT_PL(8016+u)-FOR_TGE_SPOT_PL(u))/TGE_SPOT_PL(8016+u); 
       sum=sum+err; 
       end 
         MAPE=sum/744; 
         MAPEs(m,1)=i; 
         MAPEs(m,2)=j; 
         MAPEs(m,3)=k; 
         MAPEs(m,4)=MAPE; 
    end 
    end 
end 

 



80 
 

Appendix C – Representative code for ARMA model parameters estimation 

 

for i=0:6 %varying order of AR model 
   for j=0:6 %varying order of AM model 

     
     model=arima(i,0,j); %generating a model structure 

     [estmdl,logL]=estimate(model,OMIE_SPOT_PT_diff(1:8016))  

                        %estimating polynomial orders 

      m=m+1; %iteration count -  auxiliary variable 

 

      akaike(m,1)=i; %write p order into results matrix 
      akaike(m,2)=j; %write p order into results matrix 

      akaike(m,3)=logL; %logarithm of L likelihood function 
      akaike(m,4)=aicbic(logL,i+j+2); %calculation of AIC 

      akaike(m,5)=aicbic(logL,i+j+2,8016); %calculation of BIC 

        

   end   
end 

 


